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Abstract 
In this work, a single port exponential tapered toothed log periodic antenna based on graphene artificial magnetic 
conductor (AMC) is suggested for ultra-wideband (1–10) THz operation. The resonance frequency of the 
proposed antenna can be tuned by changing the connected DC voltage which leads to variation in the chemical 
potential of the graphene.The radiating toothed log periodic antenna consists of gold patch placed on 25x25 
graphene patches which act as an AMC surface unit. Exponential taper is used to satisfy impedance matching 
between the antenna and the feeder over the frequency range. The simulation results reveal that 90% of 
frequency range satisfies < −10  when the chemical potential is1eV.  
Keywords: Graphene, artificial magnetic conductor, terahertz antenna, toothed log periodic antenna, UWB 
antenna 
1. Introduction 
Graphene has been named the simplest complex material whichhas drawn increasing attention in recent years 
due to its unique properties and advantages. In fact, graphene is used in many fields including mechanical, 
thermal and electrical applications (Geim & Novoselov, 2007; Grigorenko, Polini & Novoselov, 2012). The 
surface conductivity of the graphene can be varied by changing the applied electrical potential (Sensale- 
Rodr´ıguez, Yan, Liu, Jena & Xing, 2013; Low & Avouris, 2014), thus many graphene based-devices such as 
antennas, filters, absorbers, and polarizer's have been suggested for bands in microwave, terahertz and optical 
frequencies (Fallahi & Perruisseau-Carrier, 2012; Andryieuski, & Lavrinenko, 2013). Graphene-based THz and 
photonic antennas were also developed in (Wu, Tuncer, Naeem, Yang, Cole, Milne & Hao, 2014; Xu, Lu, Jiang 
& Dong, 2012) for different applications. 
The graphene can be used to design THz antennas, as radiating part (Esquius-Morote, G´omez-D´ıaz & 
Perruisseau-Carrier, 2014; Tamagnone, G´omez-D´ıaz, Mosig & Perruisseau-Carrier, 2012), parasitic component, 
or high impedance surfaces (HIS) usually based on AMC configuration (Dragoman, Muller, Dragoman, Coccetti 
& Plana, 2010; Tamagnone, Gomez Diaz, Mosig & Perruisseau-Carrier, 2013). The AMC is a planar array of 
periodic surface which can improve the control of electromagnetic wave radiation. Thus this structure has been 
broadly utilized in the design of some types of antennas such as low profile leaky wave antenna operating at 
microwave regime with high efficiency and gain in correlation with conventional ground plane. Also adding 
active HIS (Huang, Wu, Tang & Mao, 2012) elements loaded with varactor diodes to the antennas enables them 
to beam steering and easy frequency tuning (Guzman-Quiros, Gomez-Tornero, Weily & Guo, 2012; Sievenpiper, 
Schaffner, Song, Loo & Tangonan, 2003). It is also possible to insert periodic graphene patches as antenna 
ground. A tunable terahertz antenna based on graphene AMC with relatively narrow bandwidth was presented in 
(Wang, Zhao, Hu & Zhang, 2013). In (Wang, Li, Zhao & Hu, 2013) many shapes of grapheme-based AMC were 
studied and compared. The graphene biased reflective array was also applied for antenna configuration to get 
frequency tuning and beam reconfiguration (Esquius-Morote, G´omez-D´ıaz & Perruisseau-Carrier, 2014; 
Tamagnone, Gomez Diaz, Mosig & Perruisseau-Carrier, 2013). 
In this work, a single port novel tunable UWB antenna depending on AMC array is proposed. The antenna has 
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5. Conclusions 
In our work, a tunable antenna based on graphene as artificial magnetic conductor has been designed to achieve 
UWB operating frequency band, (1 – 10)THz at which S11˂ -10 dB.The antenna itself has been formed as log 
periodic toothed antenna wherean exponential transmission line taper is used to increase the matching between 
the antenna and the feeder. The simulation results reveal that the antenna cumulative bandwidth increases by 
increasing the chemical potential. The highest cumulative bandwidth of S11< -10dB of the proposed antenna is 
equal to 6.86 THz at  = 1 . 
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