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Abstract 
Over the past decades, the rising energy prices and imposing environmental regulations have motivated 
manufacturers to improve the energy efficiency of their manufacturing processes. Manufacturers need to also 
consider energy efficiency in addit ion to classical performance measures. The additional performance d imension 
(energy-related indicators) significantly increases the complexity of classical production planning problems (e.g. 
scheduling), already known as NP-hard problem). To overcome the inherited complexity, an integrated 
simulation-optimization framework is proposed. The proposed approach tackles scheduling problem in a 
multi-product/multi-machine manufacturing environment and optimizes several production objectives 
simultaneously. A case study is presented to demonstrate the applicability of the proposed approach in a real-life  
industrial facility. 

Keywords: Energy efficiency, Simulation-Optimisation, Optimal Production Planning, Production Systems 
1. Introduction 
In a typical manufacturing system, time dependencies and dynamics related to multiple product flows affect the 
material flow (Duggan, 2012) and also the energy consumption (Alvandi et al., 2016). These variab les may be 
associated with a single machine tool or a process chain, or even the whole factory (Herrmann at al., 2014). In  
other words, cycle time variations and machine job sharing stemming  from multitude product routings, can 
severely impact on the energy consumption of the entire system.  

It has been generally acknowledged that efficiency improvements in a factory can only occur when holistic 
understanding of energy and resource usages is understood (Alvandi et al., 2016). There exists vast energy 
reducing opportunities on the system-level that advantageously do not require large capital investment. 
Operational method such as optimised shop floor scheduling is one example of such methods. Implementation of 
optimised shop floor scheduling is normally less costly and can easily be applied to existing systems (Fang et al., 
2011). 
Up to now, the focus of shop floor scheduling optimisations has been main ly on trad itional performance 
measures such as optimising lead times or minimising slack times on single machine/ parallel-machines. Within  
the context of mult i-object ive scheduling, the consideration of the energy related performance (objectives) within  
the entire factory has been undermined, hence hinders further research.  
The focus of this research is to develop a simulat ion-optimisation framework for solving mult i-objective 
scheduling problem within  mult i-product systems including all processes within  the process chain. In  the 
following sections, current energy related optimisation studies will be briefly explored. In  order to address the 
gap found within the literature, a simulation-optimisation framework will be presented which will be further 
applied to a manufacturer of composite brake shoes and disc pads for railway industry. 

2. Background 
Most of manufacturing systems involve complex, dynamic systems which consume energy, water and raw 
materials. Improving energy efficiency with respect to operational methods in the area of job scheduling has 
been explored by researches in recent years.  
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Mouzon et al. (2007) developed several algorithms and a mult i-objective mathemat ical programming model to 
investigate the problem of scheduling jobs on a CNC machine for reducing energy consumption and total 
complet ion time. They pointed out that there was a significant amount of energy savings (up to 80%) when 
non-bottleneck mach ines were turned off and set on idle mode. This research was performed on the machine 
level and only considers a single mach ine environment and tackled  single object ive problem;  in further work by 
(Mouzon & Yild irim, 2008) a multi-objective optimization schedule that min imized the total energy 
consumption and the total tardiness of one machine was solved. 
Fang et al. (2011) presented a mult i-objective mixed integer linear programming formulation for optimizing the 
operating schedule of a flow shop. They considered maximis ing productivity (make span) and min imising 
energy related (energy consumption, carbon footprint and peak power load). The presented mult i-objective 
model considered a simple case of scheduling 36 jobs on two machines. A Pareto frontier was established that 
showed the trade-off between throughput time and peak power. An optimal scheduling procedure for sequencing 
jobs on one process (painting process) has been proposed by (Wang et al., 2009) with the aim to reduce energy 
consumption in an automotive paint shop.  
In order to investigate potential opportunities for energy efficiency and making trade-offs that are transparent to 
the decision makers, simulation is a proven modelling technique (Alvandi et al., 2015). In line with the presented 
body of knowledge, some authors adopted energy oriented discrete event simulation model (Herrmann et al., 
2011). The model represented the production system with all the interdependencies and dynamics of technical 
building services and also considered the technical, economic, and ecological evaluation of the performance of 
process chains. Melouk et al. (2013) developed simulation optimization-based decision support tool for steel 
manufacturing and conducted tests on the impact of simultaneous change of inventory levels of both slabs and 
coils. Within their work, they solved single objective optimisation problem of minimising inventory cost of slabs 
and coils. 

Mousavi et al. (2015) proposed a simulation-optimisation framework to model dynamics of individual processes 
and the entire system. The method has been applied to a mass production system producing small variety of 
products with large quantity. Their work evaluated the effects of process parameters and the role of lot-sizing 
problems while exp loring the benefits of simulation techniques for modelling the dynamic energy consumption 
on a system-level. However, the method falls short when it  comes to multi-p roduct/multi-machine environments 
and optimisation of the entire system.  
In order to capture the inherited complexity in  terms of various product routing and mach ine job sharing, a  
modelling framework that considers product level parameters together with machine level and  system level is 
deemed necessary. 
3. Proposed Simulation Optimisation Framework 

Base on (Fu  et al., 2000), a general description of the proposed framework for a simulation-optimisation is 
presented in Figure 1 which is composed of two segments: Simulation model is the first segment and the second 
segment is an optimisation engine (optimiser) which interacts with the simulation model with its exp loratory 
algorithm. 
The simulation and optimisation communicate closely with each other. Firstly, optimisation engine provides trial 
solutions to the simulation model. Simulat ion model then runs those solutions and returns the values of objective 
function to the optimisation engine. Optimisation engine takes advantage of these output results to improve its 
search for selecting new trial solutions. 

 
Figure 1. General simulation optimisation framework 
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3.1 Simulation Model 
The simulation model represents the manufacturing system comprising all the process machines, technical 
building services and process chains with various products flowing in between. A Discrete Event Simulat ion 
(DES) model is developed using in the AnyLogic® model development environment. As illustrated in Figure 2, 
the developed simulation model takes a holistic v iew of the factory and represents the manufacturing system and 
all the material and energy flows within interactive modules: unit process, process chains and TBS. 

 
Figure 2. Simulation model framework (adopted from (Herrmann et al., 2011)) 

 
Unit Process Module: Each un it process is configured according to the corresponding machine specific  
parameters (e.g. energy profile, scrap rate, etc.). Basic unit process modules for the representation of machines 
with d ifferent operational states are created by using state charts (Alvandi et al., 2015).Following is a  brief 
explanation on configured machine states: 

• Off: refers to the state when the machine is switched off. 
• Ramp up: refers to the acceleration of the main drive of the machine when switched on. 
• Standby: refers to the period when the machine remains ready for production. 
• Preproduction: refers to the activities for preparing the production, such as loading a workpiece. 
• Production: refers to the state when the machine is processing the work piece. 
• Postproduction: refers to the state when the auxiliary equipment of the machine (e.g. lubrication pump, 

chip remover) is activated. 
• Changeover: refers to the state when the set-up of the machine is being changed. 
• Failure: refers to the state that the machine is broken down and requires maintenance 

Process Chain Module: The process chain of a product is defined as responsible processes and machines to 
transform material to product. Mult iple process chains are modelled by linking and connecting the unit processes 
according to predefined product-machine routing logic. Separate modules are configured to translate the routing 
matrix for guiding the product passing through multitude of processes and machines (Alvandi et al., 2016). 
TBS Module: The process chain requires other resources and auxiliary services such as lighting, heating and 
compressed air. In the proposed framework, technical building services (TBS) are responsible to supply services 
such as steam, compressed air, and conditioned air, cooled air and air purificat ion. Similar to unit processes, the 
TBS models are developed as having different operational states, such as ramp up, standby, production, ramp 
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down and off. The supply load on these devices is dependent on the total demand of associated production 
processes that is configured by the machine specification. Due to high  flexibility of AnyLogic®, several 
developed TBS models can be directly connected into the proposed simulation model, such as steam generation 
units (Ghadimi et al., 2014), compressed air systems and HVAC units the (Mousavi et al., 2014). Figure 2 
depicts the proposed framework for the simulation model. 
3.2 Optimisation Engine: multi-objective optimisation 
There are three main groups of methods for solving mult i objective optimisation problem. Methods which 
consider one objective at  a t ime: the lexicographic method is a  good example of methods in this group where all 
the objective functions are sorted in order of their importance (Marler & Arora 2004). Other methods such as 
Weighted Sum method belong to the second group that normalises a set of objectives into a single objective by 
multip lying each objective with a user defined weight vector (Deb, 2001). The third group considers the 
objective functions simultaneously and try to find a set of Pareto solutions instead of one single solution. 

Weighted Sum is the simplest approach and arguably the most widely used classical approach which is selected 
for the proposed framework. Weighted Sum solves a mult i-objective problem as a single objective. In this 
method, each sub-objective is solved as a single-objective problem which then will be scaled and weighted 
depending on its relative importance or weight. The mult i-objective function can be maximized or minimize 
(Equation 1 formulates a minimisation problem). 

Minimise  F(X) =� 𝑊𝑊𝑊𝑊  𝐹𝐹𝑊𝑊 (𝑋𝑋)
𝑛𝑛𝑛𝑛
𝑘𝑘𝑘𝑘=1                       

 Subject to gj(X)≥ 0,     j=1,2,…,J; 
   hk (X) = 0,     k=1,2,…,K; 

   𝑥𝑥𝑥𝑥(𝐿𝐿) ≤ Xi ≤ 𝑥𝑥𝑥𝑥(𝑈𝑈)
   i=1,2,…,N; 

(1) 

where(∈ [0,1]) is the weight of the m-th objective function so that ∑ Wm = 1𝑛𝑛
𝑘𝑘=1 . 

 

3.3 Optimisation Engine: Search Method 
Metaheuristic approaches have drawn considerable attention from many researchers in the last decade. Bianchi et  
al. (2009) identified that these methods are a valid alternative to exact classical optimisation algorithms as well 
as stochastic combinatorial optimisation problems. In fact, metaheuristic algorithms (such as simulated annealing, 
Tabu search) have dominated the optimisation routines of simulation software due to their flexibility and 
robustness (Fu, 2002).These algorithms are known to be flexib le in dealing with any type of solution space 
(either discrete, continuous or a combination of them) and are capable to quickly achieve high quality solutions.  
Advances in the area of metaheuristic optimization coupled with improved computing environments resulted in 
creation of general-purpose “black box” optimizers (Glover et al., 1999). As a matter of fact, this approach has 
dominated the optimisation routines of the simulation software owing to their flexib ility in dealing with any type 
of solution space (either discrete, continuous or a combination of them) and their ability to quickly achieve good 
quality solutions (Fu, 2002). In black-box approach, the metaheuristic optimizer selects a set of values for the 
decision variables and uses the responses (or objective function values) generated by the simulation model to 
make decisions regarding the selection of the next trial solution. This procedure is iterative until a  termination 
condition is fulfilled which means the best solution is found and is returned as the optimal (or near optimal) 
solution. 

OptQuest search engine combines the metaheuristics of Tabu Search, Neural Networks, and Scatter Search into a 
single search heuristic. A simple way to describe its search mechanism: if a candidate solution does not fit the 
constraints, OptQuest eliminates that solution and exp lores candidates that are more likely  to be better. The 
efficiency of OptQuest search algorithm is very much dependant on the size of the solution space and the starting 
point (Kleijnen and Wan, 2007).  
OptQuest uses three stopping criteria (Kelton & Law, 2000): 
• Run until maximum number of configurations defined by the user is achieved (MNC). 

• Run until no improvement is obtained in  the value of the objective function fo r 100 consecutive 
configurations (Automatic Stop in OptQuest). 
• Combination of above rules; optimizat ion runs until non-improving configurations are equal to 5 percent of 
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MNC. 
By using OptQuest™ to deal with the mult i-objective optimization problems, there are a few classical methods 
that could be applied, like weighted sum approach or goal-oriented optimization as described earlier. Although 
these approaches are d ifferent from each  other, their main aim is the same, which is to convert a  mult i-objective 
optimization problem into a single-objective optimizat ion problem. Among these approaches, the weighted sum 
approach is the simplest and probably the most widely used classical approach. In order to derive theories from 
practice, the proposed simulation-optimisation methodology was applied to a manufacturer of composite brake 
shoes and disc pads for the railway industry. Report any other analyses performed, including subgroup analyses 
and adjusted analyses, indicating those that were pre-specified and those that were exploratory (though not 
necessarily in the level of detail of p rimary analyses). Consider putting the detailed results of these analyses on 
the supplemental online archive. Discuss the implications, if any, of the ancillary analyses for statistical error 
rates. 
4. Case Study 

The investigated company offers around 100 different products, which generally are grouped into three product 
families. These products differ in terms of various material compositions, weight and shape. For the ease of 
demonstration, six products are chosen- two from each product family. Figure 3 is a representation of the process 
sequences and a reference map for the flow of 6 product families. In general, all p roducts follow five consecutive 
processes to be manufactured: weighting, mixing, biscuit pressing, moulding and curing. However, the products 
vary in shapes, thicknesses, and material compositions to suit different braking systems requirement. As a result, 
key variables, such as routing and processing time are product specific. 

 
Figure 3.Representation of process sequence and sample product routings(Alvandi et al., 2016) 

 
In the first process step (weighting), there is only one weighting unit (WU) for scaling the raw materials. In  
mixing, three mixers (MX) are used to generate the frict ion material compound. The batches of specific products 
are mixed and stirred until they become a homogeneous mixtu re. Based on the product (batch) type and the 
mixer’s technical specification (e.g. machine capacity) the batches are assigned to specific mixers. 

The mixed compound is transferred to  pressing machines where it is pressed into cuboid biscuit shaped units. 
Depending on the product and material mix, this process step is performed by different biscuit presses (BP). 
There are five biscuit presses, three automatic and two that are manually operated. 
Parallel to the brake pad production line, the back-plates are produced in a separate line. In the mould ing 
workstation, which contains ten moulding presses (MP) and heaters, the biscuits are heated and pressed against 
their corresponding back-plate to form the actual brake b lock or pad. Depending on the type of product and 
material used, either radiofrequency waves or induction is used to heat the biscuits to approximately 150°C so 
they can be moulded in the presses immediately. The presses can be equipped with different types of moulds 
with different capacity (ranges from two to eight cavities). 
Curing is the final process for most of these products, so in this workstation the moulded products are placed into 
one of five curing ovens including two electric (EO) and three gas ovens (GO). In this process step, depending 
on the type of product, only one of five programs can be selected. During the curing process, the friction 
materials are hardened and homogenised. 
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4.1 Data Collection 
The studied organisation utilized Citect v. 7.20 fo r its SCADA system (supervisory control and data acquisition 
system) and the Oracle database for enterprise resource planning. The Oracle® ERP system provided useful 
input information (such as BOM, production schedules) while Citect SCADA® provided detailed machine 
specific values (such as scrap rate, machine status, mean time between failure (MTBF) and mean time to repair 
(MTTR)). Table 1 shows an example of model input for configuring the mixing processes. 
 

Table 1. Model input for mixing processes (S. Alvandi et al., 2016) 

Resources 

Product specific paramaters Machine specific parameters 

Product 
type 

Lot 
size 
(qty) 

Production 
time / lot 
(min) 

Setup 
time 
(min) 

Production 
power (kW) 

Standby 
power 
(kW) 

Scrap 
rate 
(%) 

MTTR 
(min) 

MTBF 
(min) 

MX1 A 26 21 300 5.56 0.22 1 100 2000 B 222 40 

MX2 C 170 14 300 22.3 0.12 2 100 2000 F 192 33 

MX3 D 143 32 300 9.71 0.05 1 100 2000 E 81 32 
 
Every product in this system has its own batch size, which means that the batches contain a different number of 
products. These products are stored in front of the machine according to their types, and when a given storage 
reaches its batch size; all the stored products are released and assigned to the machine. From a modelling 
perspective, there are two  dynamic parameters in  the process module which change depending on the product 
type, i.e., the batch size and production time, both of which require new value for each process module when a 
new product is ready for production. After a g iven product has been processed on a particular machine, the 
model checks the product routing to determine the relevant machine for the consequent process and then assigns 
the product to that machine. 

4.2 Data Collection 
Routing dictates the process steps that the product must go through as well as the specific machine tool for that 
processing step. Table 2 shows the routing and production times of each product family. Routing in  the weighing 
and mixing workstations is not flexib le because each product family can be processed on only one machine, 
unlike the biscuit pressing, moulding and curing workstations where products in the same family have several 
alternative machines. In the simulated case, the product routing was predetermined by production planner 
according to product specification and machine technical specification.  
Also within Tab le 2, the established production times are per unit o f product. Because the product flows in  
different forms and units, the production time should be scaled accordingly. In weighting, mixing, and b iscuit 
pressing, the time is per batch since based on the batch size and weights, production times vary. In mould ing the 
time is given per product because the shape of the product changes after raw materials have been pressed into 
blocks. Finally, production time in the curing workstation is per cycle because processing does not commence 
until the ovens are full.  
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Table 2. Routing and production times of different product families 

Workstation Machine Product Family 
I II III 

Weighting (Min) WU1 7 28 30 

Mixing (Min) 
MX1 - - 14 
MX2 21 - - 
MX3 - 40 - 

Biscuit Pressing (Min) 

BP1 - 0.67 - 
BP2 - 0.67 - 
BP3 3.2 - - 
BP4 - - 0.7 
BP5 3.2 - - 

Moulding (Min) 

MP1 - 2.2 2.11 
MP2 - 2.2 2.11 
MP3 - 2.2 2.11 
MP4 3.35 - - 
MP5 - 2.2 2.11 
MP6 3.35 - - 
MP7 - - 2.11 
MP8 - 2.2 2.11 
MP9 - 2.2 2.11 
MP10 - 2.2 2.11 

Curing (Min) 

EO1 14 - - 
EO2 14 - - 
GO1 4 10 4 
GO2 4 10 4 
GO3 4 4 4 

 

The production system operates on 2-shifts/day for 5-days/week. Production starts at 6 AM and fin ishes at 10 
PM. For the purpose of this study a copy of the (weekly) production plan for one month was obtained from the 
production planning department and then the system was simulated. With regards to energy consumption, the 
amount of electricity  consumed by each machine during different operational states is measured by a portable 
power analyser and then determined by studying the energy profile. With regards to the consumption of gas in 
the ovens, the nameplate values of each machine were used and further validated with the gas meter readings. 
4.3 Simulation Validation 
A model for the entire factory was developed in Anylogic®, Microsoft Excel® and Java® using the method 
described in Section 3. It involved configuring the production processes in Anylogic® and defining the 
production parameters in Microsoft Excel®. A snapshot of this simulation model is shown in Figure 4. 

 
Figure 4. Snapshot of the simulation model 
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The daily electricity consumed by the entire factory was simulated for a  period of one month, and then compared 
with the actual consumption data. The simulation run was set to continue for five weeks. One week was 
dedicated (as transient phase) to warming up the system where the simulat ion results were d isregarded. Having a 
warm-up period ensured that the simulation was not influenced by the initial conditions and it had reached a 
steady-state phase before collecting data from the simulation (Banks, 1998). The results of the daily electricity 
consumption simulation of the entire factory for the given month were compared with actual consumption data 
and shown in Figure 5.  

 
Figure 5. Daily electricity consumption of the entire factory; Actual data vs. Simulation 

 
The simulation  error is determined by calculat ing the rat io of the difference between  the simulated and actual 
total electricity consumption to actual total electricity consumption ( see Equation 2). 

𝐷𝐷𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  % = 
(𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑆𝑆𝑥𝑥𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥𝑆𝑆𝐷𝐷)

𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  
∗ 100  (1) 

As Figure 5suggests, the daily simulation error is less than 10% on average. Notably, the first three Saturdays as 
can be seen, cause the highest difference between 14-18 %. A close investigation has identified an unplanned 
weekend production (over t ime work to catch up delayed orders) on the curing ovens has been carried out which  
was not included in the simulat ion. Furthermore, the model shows a higher accuracy for estimating the energy 
consumption at an aggragated level (e.g. weekly and monthly). Tab le 3shows the comparison between the 
simulated factory energy consumption and the factory energy measurements on weekly and monthly basis. 
 

Table 3. Comparison between actual consumption and simulation 

Performance indicator Actual Simulated Variance 
Week 1 Electricity in kWh 54570.098 52318.48288 4.13% 
Week 2 Electricity in kWh 55067.195 52688.98872 4.32% 
Week 3 Electricity in kWh 55995.25 52604.48155 6.06% 
Week 4 Electricity in kWh 53987.44 52088.92735 3.52% 
Monthly total Electricity in kWh 219619.983 209700.8805 4.5% 

 
4.4 Solving Multi-Objective Optimisation 
In this case study, each product family has several feasible alternative machines for carry ing out required 
operations. Product routing problem in this environment consists of assignment of each operation to a machine. 
When considerable routing flexib ility exists in a production system, changing product routing may significantly  
affect system’s throughput and work-in-process inventory (Calabrese & Haus man, 1991). On these basis, the 
main objectives to be considered for this case study are maximis ing product throughput, minimising factory 
energy consumption while minimising lead time of products. In the following section, the decision variables and 
objective functions will be discussed in more details. 

Model Settings 
As for arranging and setting OptQuest® parameters for the optimisation, new parameters are introduced to the 
simulation model. These new parameters act as representation of the routing and for configuring those, discrete 
numbers are selected with defined Min/Max and step size. The Min/Max numbers are reflect ive of the number of 
the actual machine under each process. For example the decision variable set up for Product A for presentation 
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purposes is shown in Table 4. For the rest of the product types, same optimisation parameter setting is performed  
but due to space limitation, all tables are not presented. 
 
Table 4. List of decision variables for product A for optimisation 

Parameter Type Min Max Step 

ProductA_mixingMachine discrete 1 3 1 

ProductA_biscuitingMachine discrete 1 5 1 
ProductA_mouldingMachine discrete 9 10 1 
ProductA_curingMachine discrete 1 5 1 

 

The production is simulated for a two week period where the first week is considered as a warm up period thus 
the system perfo rmance related to this period was discarded. Therefore, the objective functions were only 
measured for the second week. Real-world problems mostly contain computationally expensive objective 
functions that may result in optimizat ion runs that take several days. Stopping criteria are needed to terminate the 
execution of optimization algorithms. The automat ic stop is chosen as a stopping criterion with in OptQuest 
which terminates the optimisation when the algorithm determined that new solutions are not likely to produce a 
better objective value. 
Decision Variables 
The aim is to find the best choice of machines under each process step (Mixing, Biscuit pressing, Moulding, and 
Curing) for ten products. This study only focuses on finding the best routing for the ten selected products, 
representing all three product families. For selecting the ten products, the production order book for a particular 
month was studied. The order quantities for each product were ranked and the result showed that 10 of the 
products were responsible for 90% of production load.  

The choice of machines to be used for each process for a particular product follows a set of heuristic ru les which  
considers technical capability of the machine fo r processing a particular product. Some of the heuristic rules in  
assigning the product type to the machine include all mixers and all biscuit pressing machines, because there is 
no limitation in terms of technical compatibility between the machines and the products. Nevertheless, utilisation 
of moulding machines on product types has limits. From technical point of v iew, product in  group I (as shown in 
Table 2) can only be processed on MP9 and MP10 whereas the rest of the products can go to any mould 
machines. Also not all curing ovens are suitable for all product types. 
Objective Functions 
This study takes significant interest in understanding the impact of different product routing on energy, 
throughput and lead time. Throughput is the number of products that are produced by the production system 
within a certain period of time. Energy is total amount of electricity consumed by the system during the period 
under consideration. Lead Time is defined as the average time that the product spends in the shop floor passing 
through each process step till it gets through the last process. The ultimate goal of the company is to choose the 
best possible routing for each product type so that the energy is min imised, throughput is maximised and the lead 
time is minimised. As explained earlier, in Weighted Sum method, each sub-objective is solved as a 
single-objective problem which then will be scaled and weighted depending on its relative importance. 

Energy Minimisation 
As a first scenario, the aforementioned decision variables are configured and fed into OptQuest® with the 
objective function set on Minimisation of Energy. Optimisation was run with the Energy as the main objective 
function to be minimised with automat ic stop. As the problem was a determin istic problem, only one rep licat ion 
was performed. Table 5 shows, total run (the total number of observed solutions), the best run (the number of 
observed solutions before reaching the best solution) and the values of objective function are given. 
 

Table 5. Objective values when minimising total energy consumption 

Total run Best run Throughput (pcs) Energy (kWh) Lead Time (Min) 

303 246 6426 59421.58* 7222.55 
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It should be noted that in optimising the single object ive (energy consumption), the other two objectives 
(throughput and lead time) are not priority for OptQuest® to optimise. Observing the recommended variable 
setting for the optimised energy as illustrated in Table 6, the following trend is seen:  
• For almost all products, biscuit pressing machine number 5 was chosen.  

• For most products the mixing number 3, moulding number 10 and curing oven number 5 were chosen. 
OptQuest® selection of these particular machines can be explained as the fo llowing: In mixing process, MX3 is 
recommended by the optimiser engine fo r almost all products because it consumes less energy than others on 
stand- by mode. The same reasoning applies for selection of BP5 as well as MP10 and Curing number 5 which  
uses gas. It is noted that the chosen machines are in fact rated as low energy consumers among other machines. 
 

Table 6. Optimal product routing for the products when minimising total energy consumption 

Product# Mixing Biscuiting Moulding Curing 
Product 1 3 5 10 5 
Product 2 1 5 10 5 
Product 3 3 5 10 5 
Product 4 1 5 10 1 
Product 5 3 5 10 5 
Product 6 3 3 10 5 
Product 7 3 5 10 2 
Product 8 3 5 10 5 
Product 9 3 5 8 5 
Product 10 3 5 10 5 

 
Throughput Maximisation 

As a second scenario, the objective function on OptQuest® is set on maximisation of throughput. OptQuest® 
was run with automatic stop. The result of optimised throughput shows that OptQuest® arrived to the optimum 
15041 (pcs) after 389 total runs as shown in Table 7. 
 
Table 7. Objective values when maximising throughput 

Total run Best run Throughput (pcs) Energy (kWh) Lead Time (Min) 
389 378 15041* 69151.49 5808.88 

 
From the solution space (decision variable) point  of v iew, the recommended machines under each process are 
different to the Energy optimisation problem as illustrated in Table 8. Here due to objective function being 
Throughput Maximisation, the OptQuest® search algorithm is trying to achieve the highest possible product 
yield by means of job sharing and maximum utilisation.  
It is of no surprise to see for each process step, almost all of the machines are utilised. Contrary to the 
recommended machines of Energy optimisation exercise, this time OptQuest® strategy to maximise throughput 
is by distributing the products to as many machines as possible. 

 
Table 8. Optimal product routing for the selected products when maximising throughput 

Product# Mixing Biscuiting Moulding Curing 

Product 1 2 2 9 1 
Product 2 3 5 10 1 

Product 3 2 4 5 1 
Product 4 1 4 5 2 
Product 5 3 3 4 1 
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Product 6 2 2 6 2 

Product 7 2 4 3 3 
Product 8 2 4 6 4 
Product 9 1 3 7 5 

Product 10 1 2 8 5 

 
Lead Time Minimisation 
As a final scenario, the minimisation of the lead time is the third single objective problem to solve by 
OptQuest®. Similar to the previous optimisation, the OptQuest® will stop when it finds the optimum point 
based on its built in algorithm. After 361 runs as shown in  Table 9, it  arrives at the Lead Time with the value of 
4780.51 minutes as the best possible result. 

 
Table 9. Objective values when maximising throughput 

Total run Best run Throughput (pcs) Energy (kWh) Lead Time (Min) 

361 359 10364 67454.11 4780.51* 

 
As for the decision variable( as in  Table 10), it  is noticed that the OptQuest® algorithm uses the same search 
strategy as it did for minimising lead time and proposes job sharing and line balancing to other machines. 

 
Table 10. Optimal product routing for the selected products when maximising throughput 

Product # Mixing Biscuiting Moulding Curing 
Product 1 2 5 9 3 
Product 2 3 2 10 3 
Product 3 2 2 2 2 
Product 4 1 2 10 3 
Product 5 2 4 5 1 
Product 6 3 2 8 5 
Product 7 3 4 6 1 
Product 8 1 1 4 2 
Product 9 2 3 3 4 
Product 10 2 1 9 4 

 

Multi-objective Minimisation 
To solve the problem of optimisation of three objectives simultaneously, all three objectives need to be combined 
to one objective which then similarly can be solved within OptQuest® simulat ion-optimisation platform. As 
discussed earlier, the proposed optimisation engine ut ilised the weighted sum method to combine several 
objective functions. Table 11 shows the best and worst values of each objective function generated from the 
single optimisation problems solved above. For the ease of the reader to locate the optimum results of each 
objective, the * sign is placed next to the optimum values. 
 

Table 11. The best and the worst of each objective during single optimisation runs 

Primary objective function Throughput 
(pcs) 

Energy 
(kWh) 

Lead time 
(min) 

Throughput 
Min 3,710 59,600 4,571 
Max 15,041* 70,417 8,185 

Energy Min 3,710 59,422* 5,250 
Max 12,884 69,564 8,130 

Lead time Min 3,710 59,600 4,781* 
Max 13,232 70,457 7,952 
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Min 3,710 59,422* 4,571* 
Max 15,041* 70,457 8,185 

The min/max values for each objective functions are fed into the OptQuest® as well as the single objective 
function f(x) which is combination of all three single objectives (see Equation 1). The weighted sum method, the 
optimisation engine also needs the relative importance of each objective function or weights. Since achieving 
optimum results for all of the objectives at the same time is the main goal of the company, each of the weights 
(w1, w2 and w3) is set at equal weighing (e.g. 1/3 of total importance which means 0.33). After setting the 
OptQuest® with  the new objective function and weights for each objective, OptQuest® started its search and 
eventually stopped at 321st run. Table 12 summarises the results for each objective for when the optimum was 
reached. The OptQuest® result suggests, the optimum energy to produce the highest possible number of products 
(13450 pcs) is 65265 kWh within 4897 unit of optimum time. 
 
Table 12. Optimal value of objectives with equal importance 

Total run Best run Throughput (pcs) Energy (kWh) Lead Time (Min) 
321 319 13450 65265 4897 

 
For understanding whether the optimised results are actually  any better, a  baseline scenario is simulated with the 
current system setting for the whole production system. The duration of the simulation was also for two weeks 
with the first week discarded as a warm up period.  
In order to demonstrate the variation between two sets of three d imensional results, the results on energy and 
lead time are plotted separately against throughput as in two d imensional graphs. Figure 6 presents the variation 
between the optimum result and the baseline scenario on energy versus throughput. As it shows the optimal 
solution led to 4515 pcs in throughput and 5% decrease in total energy consumed by the system. There is a 
significant 51% improvement on the throughput. In Figure 7, the throughput results are plotted against the lead 
time results. The minimum lead time of 4897 minutes has been improved about 15% from the baseline lead time. 

 

 

 

Figure 6. Throughput vs. Energy for baseline and 
optimal solution 

Figure 7. Throughput vs. Lead time for baseline and 
optimal solution 

 
To explain the significant improvement on throughput and lead time and the reduced energy, the solution space 
(optimal product routing) is studied. Table 13 presents the OptQuest® choice of optimum routing for each 
product. Comparing this setting (mult i optimisation) and the energy min imisation problem (single optimisation), 
the choice of mach ines, in particular mould ing machines are much more diverse. Obviously utilising variety of 
available machines result in lead-time reduction and increase in throughput but adversely affects the energy 
consumption. 
 

Table 13. Optimal product routing for the selected products 

Product # Mixing Biscuiting Moulding Curing 
Product 1 1 4 10 2 
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Product 2 3 1 10 3 
Product 3 2 1 9 2 
Product 4 2 4 10 2 
Product 5 2 5 6 2 
Product 6 1 2 8 1 
Product 7 2 4 1 2 
Product 8 1 3 2 4 
Product 9 2 4 1 5 
Product 10 2 5 5 5 

 
4.5 Sensitivity Analysis 

Sensitivity analysis is a natural step of robust optimisation that follows a systematic approach to changing the 
value of model decision variab les over some range of interest in order to observe how the changes affect model 
behaviour (Balci, 1998). It also can identify those input variables which the values of objective functions are 
very sensitive.  
Ult imately, the validity o f the model can be enhanced by assuring that those values are determined with 
sufficient accuracy. In this section, how sensitive the value of the objective functions were to the weight of the 
objective functions was investigated by defining 19 more scenarios in addition to the three single objective 
scenarios. For each scenario, a  different combination of weights is selected for the objectives; see Table 14. The 
sensitivity of the objective weights was analysed by comparing 22 scenarios with a different combination of 
weights. The values for each object ive vary according  to weight change and show they are sensitive to changing 
weights. For example, when scenario S9 is compared with S0 (a 40% reduction in the throughput weight) the 
throughput objective was reduced by around 8.3% (from 15041 pcs in S0 to 14115 pcs in S9) whereas in a 
non-sensitive model, more reduction was expected (around 40% reduction in throughput). 
 

Table 14. Optimisation results for 21 scenarios 

Scenario Throughput 
weight 

Energy 
weight 

Lead Time 
weight 

Throughput 
(pcs) 

Energy 
(kWh) 

Lead 
time(min) 

BS    8935 68530.8 5733.3 
S0 1 0 0 15041 69151.5 5808.8 
S1 0 1 0 6426 59421.6 7222.5 
S2 0 0 1 10364 67454.1 4780.5 
S3 0.33 0.33 0.33 13450 65264.7 4896.6 
S4 0.2 0.2 0.6 12797 67458.8 4211.4 
S5 0.2 0.4 0.4 11238 63466.4 4545.8 
S6 0.2 0.6 0.2 7465 60070.8 6362.3 
S7 0.4 0.2 0.4 13922 66408.5 5434.4 
S8 0.4 0.4 0.2 11926 62589.9 5175.6 
S9 0.6 0.2 0.2 14115 65732.6 4936.5 
S10 0 0.2 0.8 12620 65332.7 4128.7 
S11 0 0.4 0.6 9570 62949.5 4782.7 
S12 0 0.6 0.4 7111 59943.6 6378.0 
S13 0 0.8 0.2 5568 59827.7 5745.7 
S14 0.2 0 0.8 12220 66152.4 5128.4 
S15 0.2 0.8 0 6690 59737.8 7262.4 
S16 0.4 0 0.6 11359 69018.0 4757.7 
S17 0.4 0.6 0 10932 60768.9 6175.0 
S18 0.6 0 0.4 14652 68355.5 4533.8 
S19 0.6 0.4 0 14250 62666.1 6252.6 
S20 0.8 0 0.2 14981 66465.3 5232.7 
S21 0.8 0.2 0 14882 65222.4 7113.2 
 
Further comparison is performed  where the value of object ive functions in each scenario  was compared with the 
baseline (i.e. scenario SB). Table 15 summarises the values of objective functions for each scenario as well as the 
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absolute and relative deviation between the baseline and other scenarios. The scenarios can be compared with 
each other to quantify the impact each weight combination has on the objectives.  
As explained before, in solving this multi-object ive problem, all objectives are important to decision maker; the 
equal share of 0.33 fo r each objective signifies scenario 3 (S3) of the presented table. However, it is always 
possible that the given priority on operation objectives would change according to different business strategies. 
This highlights the applicability of the sensitivity analysis in understanding the impact that each priority setting 
(weights) will have on the objectives. It is already expressed earlier that the equal weights of 0.33, S3 achieved 
desirable result and could optimise each of the objectives (throughput, energy and lead-time) by 51%, 5% and 15% 
accordingly. 
 

Table 15. Absolut and relative deviation between baseline and other scenarios 

Scenario Absolute deviation Relative deviation 
 Throughput Energy Lead time Throughput Energy Lead time 
S0 6106 620.7 75.5 68% 1% 1% 
S1 -2509 -9109.2 1489.2 -28% -13% 26% 
S2 1429 -1076.7 -952.8 16% -2% -17% 
S3 4515 -3266.1 -836.7 51% -5% -15% 
S4 3862 -1072 -1521.9 43% -2% -27% 
S5 2303 -5064.4 -1187.5 26% -7% -21% 
S6 -1470 -8460 629 -16% -12% 11% 
S7 4987 -2122.3 -298.9 56% -3% -5% 
S8 2991 -5940.9 -557.7 33% -9% -10% 
S9 5180 -2798.2 -796.8 58% -4% -14% 
S10 3685 -3198.1 -1604.6 41% -5% -28% 
S11 635 -5581.3 -950.6 7% -8% -17% 
S12 -1824 -8587.2 644.7 -20% -13% 11% 
S13 -3367 -8703.1 12.4 -38% -13% 0% 
S14 3285 -2378.4 -604.9 37% -3% -11% 
S15 -2245 -8793 1529.1 -25% -13% 27% 
S16 2424 487.2 -975.6 27% 1% -17% 
S17 1997 -7761.9 441.7 22% -11% 8% 
S18 5717 -175.3 -1199.5 64% 0% -21% 
S19 5315 -5864.7 519.3 59% -9% 9% 
S20 6046 -2065.5 -500.6 68% -3% -9% 
S21 5947 -3308.4 1379.9 67% -5% 24% 

 
5. Conclusion and Outlook 
Most of efficiency improvement decisions are mult i-objective problems in which management needs to handle 
the challenges of conflicting objectives. Due to complexit ies and uncertainties exist in real-world problems, and 
a simulation-optimisation was considered as the most practical platform.  

There are many examples in literature for solving scheduling problems on a single machine or parallel-machine 
for minimising for instance tardiness or maximising machine utilisation. However instances that apply 
multi-objective optimisation, considering energy and traditional business objectives are rarely found within the 
research field. Th is paper exp loits the use of simulation-optimisation framework for energy efficient production 
planning and control. 
The proposed framework utilises the simulation model for evaluation of performance of the system under 
different scenarios. As for optimisation part of the framework, several decision variables are evaluated 
simultaneously, searching the solution space to find optimal or near optimal solution. As presented, improvement 
opportunities are evaluated and optimised considering all relevant parameters (machine, process chain, factory 
and product).  
From the system perspective, the inclusion of product view in the optimisation of energy consumption for the 
whole factory shows a great leap towards holistic system improvement. Through optimal product routing, it is 
possible to achieve highest possible throughput and lowest possible energy consumption. The proposed optimal 
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routing would result in 51% increase in throughput with energy consumption having an increase of 5%. 
In recognition of the importance of life cycle view on achieving environmental sustainability, the opportunity 
exists to expand the proposed approach to include and span the entire product life-cycle. Further research should 
consider modelling and optimisation of other life-cycle phases including product design, material ext raction, use 
and the end-of-life. 
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