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Abstract 
In this research, we will work sequencing problem of patients demanding surgery under uncertainty in times 
(including the surgical time, time to prepare the operating room, patient awake time before transferring to the 
recovery room …). For this problem, a stochastic mixed integer programming model as Stochastic Surgery 
Sequencing Model (S3M) has been developed.Since this model is achance-constraint problem, which makes it very 
complex. This problem aims to minimize the cost of operating room personnel overtime and to reduce patient’s 
waiting time. In mathematical schedule models, we consider three level of patient’s priority (ܨ௣ଵ, ,௣ଶܨ  ௣ଷ). Based onܨ
these moral and human dimensions, decision maker can prioritize patients. Restrictions on the balance the 
operating roomsand priorities for patients are all from the real-world constraints, are included in this issue. A 
branch-reduce-cut algorithm is used to solve the model. 
Keywords: sequencing of the patients, stochastic mixed integer programming, chance-constraint problems 
1. Introduction 
A large share of the costs and revenues of a hospital is related to operating rooms. Thus increasing productivity 
within the operating rooms has a significant impact on the ultimate performance of a hospital. Also improved 
performance in operating rooms causes increasing economic indicators in hospital, rate of services and also 
patient's satisfaction. Researchers in planning and scheduling of operating rooms fields have tried to reduce down 
time of resources, personnel overtime costs, operating room equipment fixed costs, increase revenue and service 
rates. 
Gerami and Saidi-Mehrabad (2014) have brought in their research that surgeries planning and scheduling follows 
the two steps.The first phase (surgery planning) involves the allocation of elective surgeries to various periods 
during the planning period, usually weekly, in order to minimize the associated costs. In the second phase (surgery 
scheduling), sequencing, resource allocation and the surgery start time on a specified date are determined.  
In this study, the second phase or the sequencing of elective surgery (inpatient and outpatient) under uncertainty 
surgery time and other times related surgery will be considered. 
Researches related to the Boldy (1976), Blazewich et al. (1983) and Smith et al. (1988) can be a kind of basic 
research in the areas of planning and scheduling of operating rooms.  
Some writers like Magerlein and Martin (1978), have classified literature based on solving methods.  
Based on operating room efficiency and patient waiting time, Dexter et al. (2004) reviewed the literature on the 
operational decisions of management in the operating room. In this research, Decisions were classified into 4 
categories and also 15 scenarios were introduced.  
But Cardoen et al. (2010) presented more comprehensive classification in six areas related to the characteristics 
(such as performance measures or types of patients) and technical parameters (e.g., solution methods or 
considering uncertainties) and they reviewed articles in this field. 
In Weiss (1990), Denton et al. (2007), Mancilla & Store (2009) and Batun et al. (2011) the simultaneous 
determination of the literature of the sequence and timing of surgery has been studied. 
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Lebowitz (2003), Arnaout and Kulbashian (2008), Gul et al. (2011), using techniques such as simulation, are 
discussed the sequencing of operations under uncertainty in the duration of operation on one or more sources. 
Chen et al. (2010) write, most of the scheduling in the operating room is done based on experience and innovation. 
This can cause excessive overtime and poor performance of personnel in the use of the resources.  
Liu et al. (2011) used open scheduling strategy. Accordingly, they defined a day (from 9 to 20) in the form of time 
slots (one-hour). As well they considered the maximum duration of surgery to reduce patient waiting time.They 
have developed a new heuristic algorithm to solve the problem and achieved the desired results. 

Su et al. (2011), based on block scheduling strategy, presented an approach for solving the scheduling problem in 
operating room and was evaluated using simulation. They call this approach the SOMO (In continuation of 
previous research (SOM)). In SOMO, the weight vector of a neuron (ݓ௝) indicates a feasible solution to the 
optimization problem. The best solution is achieved by updating the weight vector (closer to winning neuron 
weight vectors). This problem is considered for elective patients and also under certainty.  
Souki (2011) considered the uncertainty in duration of surgery time and presented two scheduling models for 
operating room with fuzzy parameters. The first model aims to minimize the completion time of surgery, and the 
second model aims to minimize the total weighted completion time of patients. He used genetic algorithms and 
greedy search algorithm to solve these problems.  
Ghazalbash and others (2012) presented a model for the daily schedule in operating room under certainty for 
elective patients in educational hospitals.They have developed a problem with the objective of minimizing the 
total idle time and solved it by using mixed integer programming.  
Dexter et al. (2003), with the aim of increasing the efficiency of the operating room, analyzed different scenarios 
using event-based simulation. In this model the duration of surgery and also patient arrival was uncertain.  
Chaabane et al. (2008) wrote that operating rooms with appropriation more than 10% of operating budget, are the 
most expensive part of a hospital. This paper introduces two methods for operating room planning and compares 
them.  
Belien and Demeulemeester (2007) in their research focused on the nurse's working pressure of the operating room 
due to the workload. They offered a model that integrates the process of scheduling nurses and operating room. 
The idea of this model is that, firstly, due to surgery constraints, an MSS (Note 1) is produced. Then, taking into 
account the contribution of different types of surgeries, nursing workload distribution is obtained.  
Nunes et al. (2009) using a Markov decision process, were modeled elective patients admission control and using 
the value iteration algorithm, implemented hypothetical examples.  
In some studies, researchers are trying to create an integrated model of planning and scheduling. This means that 
in addition to the operating room (intraoperative sources), they try to focus on restrictions after surgery rooms. It is 
closer to the real world. Then attempt to review the literature on planning and scheduling problems in the 
operating room with consideration of restrictions during and after surgery.  
Calichman (2005), Belien and Demeulemeester (2008) and Belien et al. (2009) were able to develop planning and 
scheduling problems with regard to the limitations and conditions of during and after surgery.  
Mulholland et al. (2005) were scheduled surgeries considering the limitations of recovery room, ICU (Note 2) and 
ward. This study was under uncertainty and researchers have developed a multi criteria model with a financial goal.  
They have solved these models using real data and linear programming.  
Oostrum et al. (2008) believe that an imbalanced schedule in the operating room, leading to fluctuating demand in 
other departments after the operating room, such as wards and ICU. They were suggesting a MSS (Note 3) in 
relation to this issue. They were graded requirements for hospital beds in surgical wards and ICU in two phases. In 
this case, the duration of surgery (for elective patients) was considered uncertain.  
Cardoen et al. (2009) presented a multi criteria objective function which minimizes the use of recovery beds and 
overtime in recovery. Limited access to equipment and additional cleaning of the operating room (e.g., 
postoperative infection) in this case is considered.To solve the problem of combinatorial optimization, column 
generation method is applied. On the other hand, a dynamic programming algorithm is presented to solve the 
problem of bounds.  
Shamayleh et al. (2012) considered the issue of operating room capacity planning decisions on the combination of 
open operating rooms. Researchers in this paper used the integer programming model, in order to combine the 
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operating room capacity decisions and operating room time allocation decisions. Capacity decisions include 
determining combination of the number of operating room that must be opened and the amount of overtime (to 
meet demand). It was a certain decision model for elective patients. 
Saremi et al. (2013) considered a several stages scheduling problem (allocation of surgical services to outpatient). 
In this model, services time are stochastic.  
Gerami and Saidi-Mehrabad (2014) in their study considered the issue of allocation of elective patients (In 
continuation of their previous work that presented a stochasticmixed integer programming model called SSAM 
(Note 4)). In this study, they developed a stochastic mixed integer programming model called ISSAM (Note 5). 
This model includes restrictions on the surgical wards and ICU. Also the duration time of surgery and other times 
(operating room preparation time, patient preparation time after anesthesia, patient awake time before transferring 
to the recovery room and operating room cleaning time) are stochastic.  
Meskens et al. (2013) presented a multi objective model based on the desires and requirements of the surgical team. 
Their goals were minimizing the time to do things, minimizing overtime time and maximize the efficacy of the 
surgical team and solved it by the genetic algorithm in real world. Their strategy was block scheduling strategy. 
The problem is proposed for elective patients and under certainty.It also assumes all the equipment and materials 
needed are available.  
Based on the above, the present inventions and features of this work can be mentioned the following: 
• Considering human dimensions such as:  

 Patient rights prism (the model is intended for patients three levels of priority and pay special attention 
to the rights of vulnerable groups such as children, pregnant women, the elderly, psychiatric patients, 
prisoners, the mentally and physically disabled and those without head) 

 The principles of medical ethics 
 Justice 
 Individual freedom (for each scheduling model, a revised approach will be considered, for example after 

the initial response, if the surgeon had a special view, again, scheduling is done according to the 
surgeon) 

 Moral 
 Patient and surgeon satisfaction and other human factors satisfaction 

In mathematical schedule models, we consider three level of patient’s priority (ܨ௣ଵ, ,௣ଶܨ  ௣ଷ). Based on these moralܨ
and human dimensions, decision maker can prioritize patients. 
• Stochastic surgery time  
• Stochastic other time such as operating room cleaning, operating room preparation time, patient preparation 

time after anesthesia, patient awake time before transferring to the recovery room  
• Separation surgery time of other times (the surgeon is present only during surgery in the operating room) 
• Time balancing in the use of operating rooms 
• Balancing on allocation of patients with priority to operating rooms 
• Considering the preference for special patients such as travelers, children, the elderly and people with 

disabilities 
In this study, we present a problem that sequences the patients demanding surgery under uncertainty, considering 
real life constraints including priorities, balancing …. In the second part of this research, we present the statement 
of the problem and develop a mathematical model for our problem. The third section presents the methodology of 
problem solving. Calculations and numerical results are presented in Section IV. Finally, section V contains the 
conclusions and recommendations. 
2. Problem Statement 
In this issue, the sequencing of elective patients (inpatient and outpatient) demanding surgery is considered. In 
other words, based on the list of patients (surgeries list) and taking into account the limitations, for each patient the 
sequence of surgery will be determined. It tries to increase efficiency of model by considering real-world 
constraints. Goal and constraints are discussed below. In this section we describe and develop a SMIP (Note 6) 
model for sequencing of elective surgery. This model is named as S3M (Note 7). 
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2.1 Symbols 
The following symbols are used in this paper: 
Indices: ݌: Patient (surgery) ݋: Operating room ݏ: Surgeon 
Parameters: ܰ: The number of patients demanding surgery ܲ: Number of patients O: Number of operating rooms ܵ: Number of surgeons ௢ܶ: Normal duration of the operating room ݋ (minute) ܶܽ௢: Allowed overtime of the operating room ݋ (minute) ݀ݏ௣ : Operating room preparation time of patient ݌  (including operating room preparation time, patient 
preparation time, anesthesia time) ௗ݂௦೛(ݔ)   : Probability distribution function of݀ݏ௣ ݀ܽ௣: Surgery time of patient ݌ ௗ݂௔೛(ݔ)   : Probability distribution function of݀ܽ௣ ݀݋݌௣: The duration of the process of care after anesthesia for patient ݌ which is done in the operating room ௗ݂௣௢೛(ݔ)   : Probability distribution function of݀݋݌௣ ݀ܿ௣: Operating room cleaning time of patient ݌ ௗ݂௖೛(ݔ)   : Probability distribution function of݀ܿ௣ ܦ௣:ܦ௣ = ௣ݏ݀ + ݀ܽ௣ + ݀ܿ௣ ஽݂೛(ݔ)   : Probability distribution function ofܦ௣ [ܮ௦, ௦ܷ]: Presence time of surgeon ݏ OT: Opening time of department of Surgery on day t ܯ, ,ଵܯ ,ଶܯ  ଷ: A Large numberܯ
Decision variables: ݔ௣,௢  : 1 if patient ݌ is allocated to operating room 0 ,݋ otherwise 
ξ௣,௣́: 1 if the patient ݌ is entering the operating room before the patient 0 ,′݌ otherwise 
π௣,௦  : 1 when surgeon ݏ is allocated to patient ݌ (to perform operation), 0 otherwise ܨ௣ଵ  : 1 when the patient ݌ has the lowest priority for surgery on day t, 0 otherwise ܨ௣ଶ  : 1 when the patient ݌ has the medium priority for surgery on day t, 0 otherwise ܨ௣ଷ  : 1 when the patient ݌ has the highest priority for surgery on day t, 0 otherwise 
λ௣  :  1 when the patient ݌ is a man, 0 otherwise 
Positive real variable: ݋ݐ௣: Start time in operating room for patient ݌ 

2.2 Sequencing Mathematical Model for Surgical Cases 
The conceptual model that is used in this problem is shown in figure 1. In this figure the entrance time and exit 
time of the patient and also the entrance time and exit time of the surgeon in a operating room have been shown. 
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Figure 1. Conceptual model (the entrance and exit of the patient and the surgeon) 
 

This model aims to minimize the sum of start time in operating room (formula (1)). According to patient’s priority, ܯଵ,  ଷ are different. So this model makes the most effort to minimize the operation start time of patientsܯଶandܯ
with a higher priority.                                    ݔ ݊݅ܯ௢ = . ଵܯ ∑ ௣ଵ.ே௣ୀଵܨ . ଶܯ + ௣݋ݐ ∑ ௣ଶ.ே௣ୀଵܨ . ଷܯ + ௣݋ݐ ∑ ௣ଷ.ே௣ୀଵܨ  ௣                  (1)݋ݐ
Constraints of this model are formulated as follows: 
  ൫to୮́ + ds୮́൯ − ൫to୮ + ds୮ + da୮൯ ≥ M ቀπ୮,ୱ + π୮́,ୱ + ξ୮,୮́ − 3ቁ ∀ p, ṕ ∈ [1, … , N], p ≠ ṕ , ∀ s ∈ [1, … , S]    (2)                                                        to୮ + ds୮ ≥ π୮,ୱ . Lୱ∀ p ∈ [1, … , N], ∀ s ∈ [1, … , S]                        (3)                    to୮́ − (to୮ + D୮ + dpo୮) ≥ M(x୮,୭ + x୮́,୭ + ξ୮,୮́ − 3)∀ p, ṕ ∈ [1, … , N], p ≠ ṕ , ∀ o ∈ [1, … , O]    (4)                                                          ξ୮,୮́ + ξ୮,୮́ = 1∀ p, ṕ  ∈ [1, … , N], p > ṕ                                (5)                                                         to୮́ − to୮ ≥ M(ξ୮,୮́ − 1)∀ p, ṕ ∈ [1, … , N], p ≠ ṕ                         (6)                                                          ݋ݐ௣́ − ௣݋ݐ ≥ ,݌ ∀ 0 ݌ ∈ [1, … , N], p ≠ ṕ ,ሖ ௣ܨ > ௣́                         (7)                                                          ξ௣,௣́ܨ = ,݌ ∀ 1 ݌ ∈ [1, … , N], p ≠ ṕ ,ሖ ௣ܨ > ௣ଵܨ                                                          ௣́                              (8)ܨ + ௣ଶܨ + ௣ଷܨ = ݌ ∀1 = 1,2, … , ௣,௣́ߦ                                                          (9)                                    ܲ = ,݌ ∀ 1 ݌ ∈ [1, … , ܰ], ݌ ≠ ሖ, ́݌ ௣ଷܨ = 1 , ௣′ଷܨ = ௣,௣́ߦ                                                         (10)                       0 = ,݌ ∀ 1 ݌ ∈ [1, … , ܰ], ݌ ≠ ሖ, ́݌ ௣ଶܨ = 1 , ௣′ଵܨ = 1                       (11)                                                          dpo୮ ≥ o∀ p ∈ [1, … , N] /tw୮ , to୮ , tp୮ ≥ OT∀ p ∈ [1, … , N]                                                          x୮,୭ ∈ {0,1}∀ o ∈ [1, … , O], ∀ p ∈ [1, … , N]                                                           ξ୮,୮́ ∈ {0,1}∀ p, ṕ ∈ [1, … , N], p ≠ ṕ                                                            ߨ௣,௦ ∈ ݏ ∀{0,1} = 1,2, … , ܵ , ݌ ∀ = 1,2, … , ௣,௢ߝ                                                           ܲ ∈ ݋ ∀{0,1} = 1,2, … , ܱ , ݌ ∀ = 1,2, … , ܲ                                                           λ୮ ∈ {0,1}∀ p ∈ [1, … , N]                                                         ܨ௣ ∈ ݌ ∀ {0,1} = 1,2, … , ܲ  
The constraint (2) ensures that the overlap does not occur for each two patients were allocated to a surgeon. The 
constraint (3) checks the start time of surgery considering the presence time of surgeon.Formula (4) refers to the 
lack of overlap between the two cases which have been allocated to an operating room.Constraint (5) and (6) 
checks the transposition in patient entrance to operating room.Constraints (7) to (11) ensure the patient’s priority to 
entrance to operating room. 
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3. Problem Solving Methodology 
Since this model is a chance-constraint problem, which makes it very complex. Based on the proposed model by 
Cheon et al. (2006), the following method (that is a branch reduce cut algorithm) is developed to solve the 
problem.  
Accordingly, the problem becomes from A to B. 
A) min ்ܿݔܶ│ߦ})ܲ ݔ ≥ ({ߦ ≥ ݔܣ ߙ = ݔ ܾ ≥ 0 
B) min ்ܿݔܶ ݔ ≥ ߦ ≥ ݔܣ ݕ = ܾ 

෍ ௞௄݌
௞ୀଵ λ௞ ≥  ߙ

௝௞λ௜ߦ ≤ ݆ ௝ݕ = 1, … , ݉ ݇ = 1, … ,  ܭ
λ௞ ∈ {0,1} ݇ = 1, … , ݔ ܭ ≥ 0, ݕ ≥ 0 

In this model, (߱)ߦ   has ݇  possible realizations {ߦ௝, … , {௞ߦ  with probabilities ,ଵ݌}  … , {௞݌ . Therefore, using 
sampling and simulation techniques, we can calculate the probability distribution functions. According to Zhou 
and Dexter (1998) and May et al. (2000) duration of surgery can be approximated with the log- normal distribution 
function. 
Log-normal distribution is a distribution that its natural logarithm is a normal distribution with μ and σ 
parameters. Mean and variance of the log-normal distribution function, respectively, are calculated by the 
following formula: ݁ఓାఙమ ଶ⁄  (݁ఙమ − 1)݁ଶఓାఙమ 
Based on sampling and simulations techniques, distribution functions for other times are calculated that it is given 
in Section 4.1. The calculation results are presented in the next sections. 
4. Numerical Experiments 
In this section, using the actual data associated with a first class state hospital, the model is tested and the results 
are presented. 
4.1 Data 
To evaluate the proposed model, 28 samples have been tested in various sizes.This issue has been considered three 
operating rooms. Usual opening time and closing time of surgical center is 7 to 14 (420 minutes) and allowed 
overtime of each operating Room is 180 minutes.In maximal condition, there are 7 surgeons related to 5 surgeries 
type, including OPT (Note 8), ENT(Note 9), ORT (Note 10), GEN (Note 11), OBG (Note 12). The maximum 
working time of surgeons is equal to 480 minutes. If we assume that surgical center is opened at time zero, then 
the operation's timeframe for each surgeon is [0, 480]. In this hospital, minimum time for surgery in about 30 
minutes and the maximum time is about 300 minutes. Information about the some parameters is provided in table 
1. Based on sampling and simulations techniques, we can approximate the distribution function of the surgery 
duration and the other time (preparation time in operating room, cleaning time after each surgery, patient 
preparation time after anesthesia, patient awake time before transferring to the recovery room,…) to log-normal 
distribution function. The means and variances of these durations is given in table 2. Table 3 continues row 10 in 
table 1. It is necessary to note that part of the patient preparation time after anesthesiais overlap with the 
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preparation of the operating room. 
 
Table 1. The value of some parameters 

Row Parameter Value Comments 
1 ܰ 9 to 16 depending on the scenario
2 ܲ ݌ ∈ [1, … , ܰ]  
3 O 3 (room)  
4 ܵ 7 (person)  
5 ௢ܶ 420 (minute)  
6 ܶܽ௢ 180 (minute)  
  ௦ 7 (AM)ܮ 7
8 ௦ܷ 15 (PM)  
9 OT 7 (AM)  

 .௣,௦is given in table 3ߨ  ,௣,௦ 0 or 1 As an example in one of the scenarios that N=10ߨ 10

11 λ௣ 0 or 1 
As an example in one of the scenarios that N=10,  
λ௣is considered as follow: 
For P=1,2,5,8,9λ௣ = 1, Others λ௣ = 0 

 ௣ଷ 0 or 1ܨ 12
As an example in one of the scenarios that N=10,  ܨ௣ଷis considered as follow: 
For P=2,3,8,10ܨ௣ଷ = 1, Others ܨ௣ଷ = 0 

 
Table 2. The means and variances of durations (log-normal distribution) 

Row Stochastic parameter Mean Standard deviation 
௣ݏ݀ 1 30 10
2 ݀ܽ௣ 90 30
௣݋݌݀ 3 15 5
4 ݀ܿ௣ 15 5

 
Table 3. The value of ߨ௣,௦ (in one of the scenarios that N=10) ࢙,࢖࣊ 1 2 3 4 5 6 7

1 1 0 0 0 0 0 1
2 0 0 1 0 0 0 0
3 0 0 0 1 1 0 0
4 0 1 0 0 0 0 0
5 1 0 0 0 0 0 1
6 0 0 0 1 1 0 0
7 0 0 0 1 1 0 0
8 1 0 0 0 0 0 1
9 0 0 0 0 0 1 0
10 1 0 0 0 0 0 1

 
4.2 Results 
The models were coded in MATLAB 2014a and solved with a heuristic algorithm. We run programs on an Intel® 
core™ i7-4500U CPU @ 1.80 GHz 2.40 GHz processor and 8 GB RAM.The results are presented in Table 4. To 
evaluate the proposed model (S3M (Note 13)), 28 samples were considered, that the number of patients on the 
waiting list was between 7 to 15 and the number of surgeons was from 4 to 7. However, the objective function 
value for each of the scenarios is estimated (M1=100000, M2=500000, M3=1000000). 
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Table 4. Results of 28 samples 
Value of goal function (rounded) (minutes) SurgeonsPatients Sample 

583800000 7 15 1 
481400000 6 13 2 
236000000 6 7 3 
308000000 6 8 4 
401300000 4 10 5 
265600000 5 7 6 
362100000 6 9 7 
302000000 7 8 8 
395100000 4 10 9 
438600000 5 12 10 
259700000 5 7 11 
546300000 7 14 12 
297700000 6 8 13 
606200000 5 15 14 
333400000 5 9 15 
559200000 7 14 16 
418100000 7 12 17 
393800000 5 11 18 
376300000 6 9 19 
392700000 4 10 20 
236200000 4 7 21 
372100000 7 11 22 
365300000 6 9 23 
468400000 6 13 24 
396500000 5 11 25 
303500000 7 8 26 
458600000 5 13 27 
334700000 4 9 28 

 
For example, table 5 provides sequence of patients for 3 samples (for reasons of brevity, only 3 examples are 
presented). On the table in front of each sample, have been presented the sequence of patients for each operating 
room. 
 
Table 5. Patients sequence after reactive scheduling for 3 samples 

Sample Number of patients Operating room Sequence of patients processing time (s)

1 11 
,଼݌} ଵ݋ ,ସ݌  {଺݌

,ଽ݌} ଶ݋ 228 ,ଵଵ݌ ,ହ݌ ,ଵ଴݌} ଷ݋ {ଶ݌ ,ଵ݌ ,଻݌  {ଷ݌

2 9 
,ଶ݌} ଵ݋ ,଺݌  {଼݌

,଻݌} ଶ݋ 176 ,ଷ݌ ,ସ݌} ଷ݋ {ଵ݌ ,ଽ݌  {ହ݌

3 14 
,ଵଵ݌} ଵ݋ ,ଶ݌ ,ଵ଴݌ ,ଷ݌  {଻݌

,ଵ݌} ଶ݋ 263 ,ହ݌ ,ଵସ݌ ,ଵଷ݌} ଷ݋ {ସ݌ ,଺݌ ,ଽ݌ ,ଵଶ݌  {଼݌
 
For example, Figure 2 is drawn for ݋ଷin sample 1. In the figure 2, the times are rounded. 
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Figure 2. Sequence of patients in operating room ݋ଷin sample 1 

 
In Table 6, the results of 15 samples are compared to two methods (current and proposed method).In this table the 
total waiting time for patients and cancellation (due to long waiting time) have been shown.Each of these models 
sampled separately.The sampling is per number of patient (between 8 to 12) which each is repeated three times. 
 
Table 6. Evaluations of S3M results compared to the current model 

 Existent Method Proposed Method (S3M) 
Sample Patients Total waiting time (minutes) Cancelation Total waiting time (minutes) Cancelation
1 8 940 0 190 0 
2 8 775 0 270 0 
3 8 815 0 235 0 
4 9 1115 0 360 0 
5 9 985 0 325 0 
6 9 1010 0 365 0 
7 10 1760 1 445 0 
8 10 1570 0 515 0 
9 10 1905 0 570 0 
10 11 2310 1 525 0 
11 11 2220 0 520 0 
12 11 1985 0 525 0 
13 12 2280 0 635 0 
14 12 2215 1 570 0 
15 12 2355 0 665 0 

 
Comparing the results listed in Table 6 has been performed by diagram 1 and2. In diagram 1, the total waiting time 
of the current method and S3M (Note 14) is presented. For every 15 cases sampled, this chart indicates that the 
proposed model is much lower waiting time than existing method.It reflects the higher efficiency of the proposed 
model. 
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Diagram 1. Comparison of total waiting time of the current method and S3M 

 
In diagram 2, the number of cancelation (due to long waiting time) of the current method and S3M is 
presented.The proposed model shows less cancelation than the existing model. 

 

 
Diagram 2. Comparison of cancelation (due to long waiting) of the current method and S3M 

 
Also in Table 7, the average of total waiting time, average of cancelation, average of free capacity in waiting room 
(men/women) and the average of free capacity in PACU of the current method and S3M are presented. 
 
Table 7. Average results of the current method and S3M  

 Existent Method Proposed Method (S3M) 
Average of total waiting time 1616 447.67 
Average of cancelation 0.20 0 

 
As can be seen, the average of total waiting time in the S3M shows a decline about 72 percent and also results 
show a decrease from 0.11 to 0 in the average of cancelation. 
5. Conclusions 
In this paper, a stochastic mixed integer programming mathematical model presented for the sequencing of 
patients in operating rooms. This article has a special approach in some aspects, such as the human dimension, 
justice, virtue, ethics, individual freedom and rights of vulnerable groups of society, including children, pregnant 
women, and elderly. In mathematical schedule models, we consider three level of patient’s priority (ܨ௣ଵ, ,௣ଶܨ  .(௣ଷܨ
Based on these moral and human dimensions, decision maker can prioritize patients. In this model, surgery time, 
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operating room preparation time, patient preparation time after anesthesia, patient awake time before transferring 
to the recovery room and operating room cleaning time is stochastic. Some restrictions such as balance the 
operating roomsand priorities for patients that are all from the real-world constraints, are included in this issue. In 
order to solve the model, a branch reduce cut algorithm was used. The proposed model (S3M (Note 15)) was 
evaluated and verified by solving several real examples of a first class state hospital (see table 4, 5). By comparing 
the obtained results with real data, we can reach a satisfactory model and thus its excellent performance (see table 
6, 7). For future research, it is suggested that a model is developed considering the non-elective patients (urgent 
and emergency). It is also suggested that the issue to be reviewed taking into account the limitations of recovery 
and waiting room. Furthermore, researchers can test the model in other situations such as educational hospitals or 
private hospitals and examine the performance of the model. 
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