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Abstract

This paper presents a Wavelet packet transform with entropy features and support vector machine (SVM) based
differential protection of power transformer by using internal fault and inrush current. The wavelet packet
transform one of the powerful signal-processing tool and it is used to extract the information of differential
current from third level using Db 9 mother wavelet. A two cycles of transformer fault current data is processed
through wavelet packet transform to obtain wavelet coefficients and then features are extracted by using
Shannon entropy principle. Subsequently, the extracted features are applied as inputs to SVM for distinguishing
inrush current from internal fault. The application of this method is studied through detailed simulation of
different faults on a power transformer using MATLAB/SIMULINK software. The results of the proposed new
technique were found to be reliable, fast and accurate in identifying the fault condition.

Keywords: Power transformer, Wavelet packet transform, Internal fault, Inrush current, Shannon entropy,
Daubechies wavelet (Db9) and support vector machine

1. Introduction

Power transformer is important equipment in the power system and its protection scheme is of vital significance
to provide continuous power supply ensuring reliable operation. When the power transformer is switched ON the
remnant flux in the transformer draws the large current from the source this current is usually ten times that of
the full load current (Rahman, M.A and Jeyasurya.B.1988) . It persists only for a very short duration and decays
very quickly, but its very high magnitude causes the relay to operate falsely. Hence such inrush current needs to
be discriminated from the internal fault to prevent mal operation.

Traditionally, harmonic restraint technique was used to discriminate the inrush current from internal fault using
second harmonic component based on the ratio of second harmonic to fundamental component (P. Liu et.al,
1992). However, it has been reported in certain cases, the internal fault may also contain second harmonic
component due to current transformer saturation or due to presence of shunt capacitor or due to the distributive
capacitance in the long extra high voltage (EHV) transmission line (T.S.Sidhu et. Al, 1992). In addition, new
generation power transformer used low amorphous material in the transformer core design that reduces the
second harmonic content during inrush current and thus leading to unused of harmonic restraint techniques
(Sidhu, T. S and Sachdev, M. S, 1992)

Later, other approaches using neural network and Fuzzy logic have also been used to process the differential
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current. (P. Bastard et.al, 1995 and D.V. Coury, 2005 ) artificial neural network was employed for power
transformer protection but these techniques requires large number of training patterns, time and need to be
retrained for the use in different power system. A Fuzzy logic technique has been implemented (A.Wiszniewski,
B.Kasztenny, 1995) & M. C. Shin, and J. H. Kim 2003), these approaches are not robust for transient conditions.
The complexity of this method is to design new rules for different cases and it is highly dependent on
transformer parameter’s. These requires an highly improved techniques to study the above foregoing problem by
using various signal processing techniques like S-transform, wavelet transform and wavelet combined with
neural network.The frequency analysis is an effective and accurate technique to analyze and classify signals with
complex characteristic.

In (S.R. Samantaray et.al 2007), a pattern recognition approach based on S-transform was developed for
differential protection of power transformer. Moreover, authors have not included external fault and in this study,
for differential protection, second harmonic restrain using adaptive linear comparer (ADALINE) was tested

In ( PL.Mao and R.K.Aggarwal 2000), a wavelet algorithm based on decision logic has been used for
transformer differential protection and wavelet algorithm using wavelet energy were proposed to discriminate
the inrush current from internal fault using db2 mother wavelet (A.I.Megahed, A. Ramadan, W.EL. Mahdy 2008).
For most effective transformer protection, differential current signals are processed to wavelet algorithm and
wavelet packet algorithm, compared with various other mother wavelet functions (A.Zabardast.et.al 2008 and
S.A.Saleh et.al 2005) From the above reported studies (P.L.Mao et.al 2000,A.1. Megahed et.al 2008, A.
Zabardast et.al. 2008,

S. A. Saleh. et.al 2005), the variations of detailed coefficients are obtained to distinguish magnetizing inrush
and fault. Moreover the discrete wavelet transform breaks only approximation version and also for each
resolution it has different frequency band. Hence the frequency information may lost. Alternatively, the WPT
provides same frequency band widths in each resolution for recording / analyzing Inrush and fault features under
each frequency bands. Meanwhile, working speed is faster than the traditional DWT.

There are several types of mother wavelets available ( S. A. Saleh. et.al 2005) therefore appropriate selection
of mother wavelets is essential for specific application.

In this paper, a new algorithm for power transformer protection is proposed based on wavelet packet transform
with entropy features and support vector machine to identify magnetizing inrush current, internal fault and
normal current. The proposed algorithm has been tested by creating faults on both primary and secondary of the
transformer and also on transmission line. The simulation studies of transformer different faults have been
carried out using MATLAB/SIMULINK and Wavelet packet transform has been implemented using functions
from Wavelet toolbox in MATLAB environment. The = SVM technique has also been implemented in
MATLAB environment using bioinformatics tool box advantage of the proposed algorithm (WPT) provides
more accurate and detailed representation of the decomposed signals. Moreover, WPT are localized in time in
offering better signal approximation and decomposition.

2. Principle of Wavelet packet transform and Feature Extraction

The structure of wavelet packet transform (WPT) is similar to discrete wavelet transform (DWT). Both have the
framework of multi-resolution analysis (MRA). The main difference in the two techniques is the WPT can
simultaneously break up detail and approximation versions, but DWT only breaks up an approximation version.
Therefore, the WPT have the same frequency bandwidths in each resolution and DWT does not have this
property. The mode of decomposition does not increase or lose the information within the original signals.
Therefore, the signal with great quantity of middle and high frequency signals can offer superior time-frequency
analysis. The WPT suits signal processing especially nonstationary signals because the same frequency
bandwidths can provide good resolution regardless of high and low frequencies. The principle of WPT can be
described as follows (Jian - Da Wu, Chiu-Hong Liu 2009)

W k() =21/ 2w 2t k), (1
Where the integers j,k - index scale and translation operations. The index n is an operation modulation parameter
(or) oscillating parameter. The first wavelet packet functions are scaling and mother wavelet functions:

wO,0t) = (1), @)

w000 = v, 3
The equation (2) and (3) represents scaling and mother wavelet functions respectively.
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Where n=2,3... the function can be defined by following recursive relation ship

W2R00 () =V2ZhK)W. (2t-K), )
k

w2 +10,06) =23 g (k)W k(2t—K) )
k

Where h(k) and g (k) are the quadrature mirror filter (QMF) associated with the predefined scaling function and
mother wavelet function. The wavelet packet coefficients, W";, are computed by the inner product <f{t), W";; >
where defined as

Wik =<fOW" Kk >=[fOW" Kk (B)dt. ©

The framework of WPT algorithm broken up to three resolution levels is shown in the Figure.1l In this present
study, the transformer fault cases will be broken up to third resolution. WPT framework is broken up to third
resolution levels j =3, As a result, three resolutions will produces 8 subspaces (2! =2° =8 ) and wavelet frequency
intervals of each subspace can be computed by

where fs is the sampling frequency. In this study fs=10 kHz. X(n) is the original signal with the frequency [ 0.2 "'
f s ]. The frequency interval of 1* and last node in the 3rd resolution is given by [0-1250 hz] and [ 8750-10 Khz]
as given in Table.1 respectively.

2.1 Choice of mother wavelet

There are different types of mother wavelets available in the literature such as Haar, Daubiechie (Db),
Coiflet(coif), symmetry(sym) etc. The selection of mother wavelet plays a major role in the characterization of
signal under consideration. It has been reported by several authors using Db mother wavelet has perfect choice
for various power system applications like transmission line protection (Sami Ekici et.al 2008), Harmonic
detection (Tuntisak.S .et.al 2007) Bus bar Protection ( Mohammed. M.E.et.al 2005) ,Power quality (Guo-sheng
Hu et.al 2007) and Partial discharge (J. Jin et.al 2006)

2.2 Feature Extraction Using Shannon Entropy

Entropy is a measure of uncertainty that is used in various fault conditions after the signal processing of the
original signal by using WPT (Jian - Da Wu, Chiu-Hong Liu 2009). To reduce data set insize, wavelet entropy is
applied to wavelet coefficients. The wavelet entropy is the sum of square of detailed wavelet transform
coefficients. The entropy of wavelet coefficients is varying over different scales dependent on the Input signals.
This wavelet entropy of coefficients can be defined as.

8
En= } log(an,k)2 (7
n=I
Where W"}, k is the coefficients of the subspace after wavelet packet decomposition and n=0,1,2..8

3. Support Vector Machine

SVM is a relatively new computational learning method based on the statistical learning theory. In SVM, the
original input space is mapped into a high-dimensional dot product space called a feature space, and in the
feature space, the optimal hyper plane is determined to maximize the generalization ability of the classifier. The
optimal hyper plane is found by exploiting the optimization theory, and respecting insights provided by the
statistical learning theory.

SVMs have the potential to handle very large feature spaces, because the training of SVM is carried out so that
the dimension of classified vectors does not have as a distinct influence on the performance of SVM as it has on
the performance of conventional classifiers. That is why it is noticed to be especially efficient in large
classification problems. This will also benefit in fault classification, because the number of features to be the
basis of fault diagnosis may not have to be limited. Also, SVM-based classifiers are claimed to have good
generalization properties compared to conventional classifiers, because in training the SVM classifier, the
so-called structural misclassification risk is to be minimized, whereas traditional classifiers are usually trained so
that the empirical risk is minimized. SVM is compared to the radial basis function (RBF) neural network in an
industrial fault classification task, and it has been found to give better generalization. SVMs may have problems
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with large data sets, but in the development of fault classification routines, these are usually not even available
(Dash et.al 2007).

Let n -dimensional input Xi (i=1,2,....M), M is the number of samples belong to class-I or Class-II, and
associated labels be Yi =1 for Class I and Yi = -1 for class —II, respectively. For linearly separable data a
hyperplane f (x) =0 which separates the data can determined

fx)=wr

n
x+b= ZWij+b:O ®)
i=1
Where “w ” is an dimensional vector and “ b” is a scalar. The vector “w “and the scalar “b ” determine the
position of the separating hyperplane. This separating hyperplane satisfies the constraints
F (x;)>1 ify; =1 and f(x;) >-1ify;=-1 and this results in

vif X)=y: W' xqtb)>+1fori=1,2,...M )
The separating hyperplane that creates the maximum distance between the plane and the nearest data is called the
optimal separating hyperplane as shown in the Figure.2. The geometrical margin is found to be ||w||_2 (Dash
et.al 2007).

Taking into account the noise with slack variables &; and error penalty C, the optimal hyper plane can be
found by solving the following convex quadratic optimization problem:

minimize

1, 2 M

SM7+C 38 (10)
i=l1

subject to

yiowTxj+b)21-8, fori=12,..M

g, 20 foralli (11)

where & is measuring the distance between the margin and the examples x; lying on the wrong side of the
margin. The calculations can be simplified by converting the problem with Kuhn—Tucker conditions into the
equivalent Lagrange dual problem, which will be

maximize
M 1 M T

W(a) = Zai—E 2ol YiYkXi Xk (12)
i=l1 i,k=0

subject to

M

2yiei=0C>0q 20,i=12,..M (13)

i=l1

The number of variables of the dual problem is the number of training data. Let us denote the optimal solution of
the dual problem with a* and W* the equality conditions in (9) holds for the training input —output pair(xi, yi)
only if the associated a*#0.In this case, training examples xi is a support vector (SV).The number of SVs is
considerably lower than the number of training samples making SVM computationally very efficient (Dash
et.al 2007)

The value of the optimal bias b* is found from the geometry,
1 *
b=~ ¥ yiog 8% +8) 1) (14)
SVs

Where S1 and S2 are the arbitrary SVs for class-1 and class-2, respectively. Only the samples associated with
SVs are summed because the other elements of the optimal Lagrange multiplier a* are equal to zero. The final
decision function is given by

%
(0= ¥ ajyjt; 1+b (15)
SVs
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The unknown data sample x is then classified as,

(=c { Class-1, if f(x) >0 (16)

Class-2, otherwise

The nonlinear classification problems can also be solved by using SVM applying a kernel function. The
classified data is mapped onto a high-dimensional feature space where the linear classification is possible. Using
nonlinear vector function,

o) =01, 92 (%) dm (X)),  m>>n (17)

to map the n-dimensional input vector x into the m-dimensional feature space, the linear decision function in
dual form is given by,

f00= Zoiyid! (1)) (18)
SVs

Notice that in (18) as well as (11 ), the inner products are used. A function that returns a dot product of the

feature space mapping of the original data points is called a kernel function K(X,Z)=®" (3)D(y).

The learning in the feature space does not re- quire the inner products where a kernel function is applied. Using a
kernel function, the decision function can be written as,

f(X)= XajyiKxi,x) (19)
SVs

There are different kernel functions used in the literature. Mercer’s theorem states that any symmetric

positive-definite matrix can be regard as a kernel matrix. In this paper, Gaussian radial basis kernel function,

which gives the best results, is selected. The radial basis kernel function is defined as,

-2

p— P PR — X —_—

K(x,Z) =exp= (20)
20'2

Where o is the width of the Gaussian function. The detailed information about the SVM can be found in Vapnik

(1998) and Vojtechand Hlavac (2004)

4. Fault Classification Using Wavelet Packet Transform and Support Vector Machine

The new method of identifying Inrush current from internal fault is obtained from wavelet packet transform
using entropy principle and SVM.Figure.3 shows the procedure for fault classification, and it follows:

. Obtain the samples of differential current signals at 20 kHz sampling frequency from current transformers

. Applying the wavelet packet algorithm for differential current signals and decomposed to 3" level and
down sample the signal by two at each level to avoid over crowding of samples.

. Applying Shannon entropy principle and calculate the sum entropy principle from each node at 3™ level
and their frequency information are depicted in Table.1

. For effective and accurate discrimination of Inrush current and internal faults a Shannon entropy principle
is used for feature vectors obtained from Node 3. Later these feature vectors are processed through SVM for
fault classification

. Assigned target has No fault for Feature vectors of Inrush, external fault and normal current and target
assigned has Fault for internal Fault.

5. System studied

In order to investigate the applicability of the proposed algorithm, a detailed simulation study has been carried
out on power system model shown in the Figure.4 The source is simulated by an equivalent 50 Hz 450 MVA
Synchronous machines with 500 MVA transformer and 100 MW load is connected in parallel. A (500/230) kV
star to delta connected transformer is employed with its neutral grounded. The CT’s used in the primary side is
delta connected and star connected in the secondary side. The saturation of core have also been considered. The
relay unit is connected to the CT’s on both HV and LV sides of the transformer. The a sampling rate of 20 kHz is
considered. The cycle contains 800 samples per power frequency band at 50Hz. The generator X/R ratio is 10.
The primary winding voltage R(pu) and L(pu) are 500 kV.0.0078 and 0.259,respectively,and secondary winding
voltage is R(pu) and L(pu) are 230 k.V 0.0078 and 0.259 respectively. The simulation model are developed using
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Matlab-Simulink software modules. The load taken here is 100 MW and 80 MVAR.
6. Results and discussions

6.1 Transformer Fault Signal Analysis Using Wavelet Packet Transform

6.1.1. Inrush Currents

Figure.5 shows a typical magnetizing inrush current waveforms of level 3, which corresponds to Phase a, Phase
b and Phase c¢ of three phase differential currents from Current transformer secondary side. The differential
current harmonics should not affect the relay performance, Since fault current waveforms are distorted, its
extracted features are decomposed to level 3 using Wavelet packet Transform. In this study a 800 samples per
frequency band is processed through wavelet packet algorithm and using Shannon entropy, the maximum
entropy values are retrieved to obtain series of wavelet coefficients for inrush current, and its corresponding
maximum entropy values are tabulated in Table.2 and Table.3 The maximum entropy values are obtained from
inrush current is found to be very less when compared to Internal fault current at level 3. For the other cases like
external faults also entropy values are found to be very less when compared to the threshold value and the relay
should not operate for the external fault case in the real time.

6.1.2 Internal Faults

If the transformer internal fault occurs in primary or secondary sides, the magnitude of current in that
corresponding faulted phase changes and differential protection technique is used to sample the differential current
Iad, Ibd and Icd from Current transformers. Figure.6 shows the typical internal fault current and amplitude of
wavelet coefficients at 3 level and reveals more information such as time domain constituent part at the frequency
band. It can be seen form Figure.6 the fault current information is very rich during internal fault. In this study a 800
samples of fault current and 20 kHz sampling frequency is considered and processed through WPT to obtain the
series of wavelet coefficients, signals were decomposed to level 3 and the frequency information obtained at 3™
level has been shown in Table.1. The proposed technique is based on extracted features from differential current
signals during internal fault. Next using Shannon entropy principle, the decomposed wavelet coefficients are
squared and maximum entropy values were obtained at 3™ level and can be used for identifying internal fault from
inrush current. From Table.2 and 3, the entropy values for internal fault current are found to be greater than inrush
current and the trip signal has been issued based on the maximum wavelet coefficients from the fault inception and
it can be set as threshold value and for accurate discrimination task these maximum entropy values and H (3,0) are
used as inputs to SVM for fault classification. Totally 264 cases are simulated (includes training and testing) and
has been shown in the Table.4.

7. Implementation of SVM (Linear kernel function)

The transformer different cases like Inrush current, internal fault and External fault are simulated. A 800 sample
/cycle of data is taken for analysis. At first stage differential harmonic current is extracted from the current
transformers and transformed to time-frequency domain using wavelet packet transform. The entropy
distribution of the detailed coefficients and approximate of the fault current waveforms form the feature vectors.
The Feature vectors are H (3,0), (3,1), (3,2), (3,3), (3.4), (3,5), (3,6), (3,7), are obtained from the 3" level of
decomposition for the corresponding signals. Next using Shannon entropy principle Features are extracted. A
total of 264 feature vectors are used for training and testing to perform transformer fault classification.

The input patterns processed through SVM contains data sets of 132 x 2 of H(3,0) and Maximum entropy are
processed through SVM for training and remaining 132 x 2 for testing. The inputs applied to SVM is wavelet
packet coefficients obtained from H (3,0) and maximum entropies obtained from 3™ level. The target is assigned
has No Fault for (Inrush current, Normal current and External fault) if maximum entropy value is less than 2000
and if maximum entropy values greater than 2000 has been shown in the Figure.7 and 8. Target assigned as
fault for internal faults. As SVM consists of two inputs. First input is from Node H (3,0) and second is from
maximum entropy values. Over all accuracy is found to be 99.24% is obtained through 264 feature vectors.

8. Conclusion

WPT using entropy features and SVM based algorithm are used to discriminate power transformer inrush current
and internal fault current is presented in this paper. The output of current transformer is inrush or internal fault
current are decomposed to 3™ level. Using Shannon entropy principle the entropy at 3™ level is obtained and
used has inputs to SVM to discriminate the inrush current and internal fault. The proposed method is based on
amplitudes of sum entropies at the resolution level 3 of H(3,0) to H(3,7).The ability of the new method has been
demonstrated by simulating various cases on a typical power system. The test results confirm the effectiveness of
the proposed algorithm
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Table 1. Characteristic of Wavelet Packet Transform

Nodes at Node | Node Node Node Node Node Node Node
Third Level (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)
Frequency(Hz) | 0-1250 | 1250-2500 | 2500-3750 | 3750-5000 | 5000-6250 | 6250-7500 | 7500-8750 | 8750-10000
Table. 2. (Entropy values at node 3 for with out load)
Fanilt types’ Hi30) Hi31) HI32) Hi33) Hi34) Hi35) H{¥ ) Hi37) Max Hinet
inrush/normal (Hisum}y | sum)
Phase & | 0.2732 0.0005 02758 0.0049 6936300 | 13900c-06 | 2.2627e-06 | TA4173e-06 | 035535
NORMAL | Phase B | 0.272) (L6 0.2832 0112 7725306 | 4.2230e6 | 21993206 | 9.9826e06 | 05711 | 6200
Phase C | 02530 | 0.0032 0.230% 01,0068 93303607 | 75574007 | 4.5355e07 | 20700e-06 | 04934
Phase A | 1539226 | 0.1403 3403420 | 115 21926604 | 1EOTIe0d | L6TITe0d4 | 16802e-04 | SOOHT01
INRUSH Phose B | 7.3446 .1562 95487 1.0993 1330804 | LOI0Sed | 15978204 | 1430004 | 181492 10848
Phase C | 180712 | 01448 JEIT981 | L0989 21326e-04 | L79RIc04 | 2390704 | 1TESledM | 5657548
Phase A | 00783 1.6992¢-005 | 00742 1090004 | 7657909 | 1.542%-08 | L24ETe-0B | 6285509 | 01526
EXTERN Phase B | 0,082] 24132e-006 | 00872 12803205 | 1511509 | LEG72e-100 | 2422709 | 1209308 | 0.1693 04834
ALFAULT | Phase C | 00809 | 75699006 | 00806 75345005 | 26244009 | 5425010 | 43283c00 | 2185709 | (L1615
Phase A& | 69262 0935 10888 08804 6.3603e-05 | 3.2565¢05 | 6457005 | 61014505 | 17815
AG Phase B | 10.BRG2 | 01172 0114 08336 16765004 | LIB36e-0d | 13326204 | 15230e-4 | 198510 35841,
Phase C | TOO58 | 00835 11000 0.9636 5039705 | 24523e05 | 5016Te05 | 51236e-05 | 18007 g5l
Phase A | 3462.7 05212 44549 16500 L0284 | T.4680e-04 | 7468604 | 33283e-(4 | TOI9R
B Phase B | 34195 04762 4399 1 17088 41706e-04 | 12415004 | 6.578Ge-04 | 44600c-04 | TR20R 15749,
Phase C | 4.0445 0.0923 39870 0419 1319704 | 6.9861e-05 | 7.891%-05 | T89MMe-05 | B.3435 1435
Phase & | 4.3677 0.0671 35M6 04742 5.5407e-05 | TA0MeD5 | L2304e-0d | TATR2e-05 | BB
G Phase B | 47513 013470 69203 L4103 353406e-04 | B0356e05 | S4621e-04 | 2E286e-4 | L1673 13240,
Phase C | 4701.5 03613 6E36.1 1.2333 321334 | RE0O0e05 | 52033004 | T7REe-4 | 11550 4809
Phase & | 10094 04471 14388 15279 32784 | TA2T3eD5 | 53654e04 | 2770de-04 | 24484
ABG Phase B | 30945 05245 3u06.8 1.57590 4.8216e-04 | 1OBSRe-04 | BO041de0d | 40157904 | 6993 49261,
Phase O | GB83.] 00164 10899 0.3291 23780¢-05 | 56043000 | 4069805 | 20880e-05 | 17784 ]
Phase A | 4599.7 03773 6407.7 14425 2850304 | 6.5202e05 | 4631604 | 2412404 | 110D0F0
BCG Phase B | 6400, 0.7333 79411 1.7081 To904e-04 | [7634e4 | 00013 f6681e-04 | 14344 41272
Phase C | 6275.3 01746 9643.2 (.65 1700204 | 4.0841e-05 | 276Tle-04 | 14500e-04 | 153919
Phase A | 60142 01982 91147 11384 L1140c-04 | 2363905 | LENSedd | 93064e-05 | 15130
CAG Phase B | 33784 04536 4314.2 14875 4.2678c-04 | 9.7282e-05 | T013Tedd | J6BEEcM | TRIS 53491
Phase C | 12803 0.1193 15662 0.6083 129184 | 30106205 | 2LI83%-04 | 112984 | 32466
PhascA | 10095 (14472 14350 1.5279 32720e-04 | TA2T9e05 | 5365704 | 27708c-04 | 24487
ABCG | Phase B | 64009 0.7334 THL1 1.7080 T6967c-4 | 1.7628c04 | 00013 6.6085c-4 | 14346 71302
Phase C | 12804 01193 15t 0.6083 12920e-4 | 3010905 | 2186204 | 1120904 | 32460
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Table 3. (Entropy values at node 3 for with load)

Fuuli Max MaxiHin
R Hi3m) H(31) Hi31) Hi33) Hi34) H(35) {36} H(3T) (i) pr—
Phase A 202417 01032 | 1988162 | 0.7204 1.6686c-04 1493014 1.2252¢-04 7.70800e-015 280.592]

Phase B 0.2514 0473 | 4163206 | O3STT 5.9363e-05 6361 8e-15 66403205 4.88Te-05 6179772 2118069
N Phase C | 440.1957 | 1119 | 7688971 | L0400 | 1.0274e04 | 7932505 | 96100eds | 8039805 1210:2 3
Phase A 1005841 | 00751 | 2188286 | 0332] | 53727c-05 | 1.200Be-05 | 162605 | 4.6003c-08 319.8201
Phase B 1094989 0.0026 | 25539431 | 01016 T.2R33e-08 2. 78R8 162 Ee-07 H4078e-08 J65.0115
INRLUISH GEh4430
Phase € 994105 | 00930 | 2016094 | 04993 | SETede-05 | 12920e05 | DT30S | 5001705 3016123
Phise A 180421 13706 | 146071 | L7612 | 3T083e07 | 92744e07 | 3380306 | 19742006 35,7810
EXTERN Phase B 18,6004 13807 141829 17909 | 4.086Te-06 1. Tk 0. TET Fe-0b 5. 2E09e-06 359639
ALFAULT | PhascC 344292 | Ban21 186901 | 00203 | 2252307 | 1.S54%0e47 1 306Te-06 | 6606807 531517 e
Pliase A 54546 01643 BI188 | 09948 | 9020305 | 1.9200e05 | 486004 | 7.6237e038 13675
AG Phose B 1005841 00751 | 2188286 | 0.332] 5.5727c-05 1 2008¢-k5 9.1626¢-05 4,6003¢-05 3650115 25042.01
Phase C A6 4 01059 T255.1 (L8672 4.61 1005 9562306 TAT23e05 JENHe-05 11902 15
Phase A 28914 014544 I6TRS 15208 | 4.2432e-04 | 9.4550e-05 | TOITe0d4 | 36306c-04 65719
o Phase B 2837 04364 3567.5 1.4533 383 Se-04 HARTIe05 6.3203e-04 326954 4001 1327461
Phase C 904102 | 00930 | 2006092 | 04993 | S8T6le-D5 | 1.2920e05 | 9.738leDF | 5.0016e-05 016119 19
Phose A 1005841 00751 2IBE286 | 0332 5.5727e-05 1. 2008e-05 9.1626¢-05 4,6003c-05 31982010
CG Phase B 3258 02388 48779 (RIS 232504 4 95Ehe-05 3685804 1903404 E137.1 1596842
Phase C 29233 00358 | 45875 | 05308 | 1.2546e-04 | 276B4e0S | 2076404 1.063e-04 5.8 ]
Phase A 9328 (L4660 13877 15349 | 3,5440e-04 7.7867e-05 5E293e-04 3.00129:-04 23812
Phase B 39635 054000 4957 15953 5.0229:-04 1127304 E.3184e-04 4301 8e-04 EHG61.3
ARG 336005
Phise © 38R4T 00140 | 62865 | 02845 | 2022305 | 46033cdld | 3411308 1750705 172
Phase A 4089 03330 5717 13489 2424304 5345305 4.0000¢-04 2.0647e-04 GROT.S
Phase B 57752 0aTI% 73219 17246 | 6.9386¢-04 1.578be-(4 0,012 5.9933e-04 13099
Hee Phiase C 43746 01643 | 67353 | 06456 | 15RO0e-D4 | 3SIM0e0S | 2620504 | 13503e04 1 -
Phase A 67766 02164 10136 LISM | 1260904 | 27060605 | 2066Te-04 1062704 16814
Phase B 2557 (LADRS 3-8 13880 | 3.7546¢-04 8402805 6.2197e-04 3.2193e-04 G006,7 458597
S Phease 90405 (10731 13998 4548 B 3676005 1.B9RSe-05 14027204 7.2270e4015 13039
Phase A 11357 0.4406 16434 15278 | 3.2060e-04 | T0360e-05 | 52373e04 | 27243004 7393
ABCG Phase B 68163 0.7368 85242 1.7034 T.7443e-04 1.7692e-04 00,0013 6,70] Te-04 13343 BERTS
Phase C 9536.2 0,130 14601 06281 1.3 Hage-04 3164305 2.3354e-04 L.2052e-04 24138

Table 4. Classification Rate

No Of Correct
Condition Incorrect Patterns Classification Rate
Patterns Patterns
Testing 132 131 1 99.24
Training 132 132 Nil 100

Total Patterns used for training & testing is =264

Training=132 patters; Testing= 132 patterns

%Classification rate=100*(Total patterns-Incorrect patterns)/(Total patterns)
% Testing classification rate=100%*(264-1)/264=99.24
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Figure 1. Wavelet Packet Tree
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Figure 3. Algorithm for Relay Operation using Wavelet Packet Transform
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Figure 5. a) Differential current for three phase inrush current
b) Differential current of Phase a at node 3,7
¢) Differential current of Phase b at node 3,7
d)Differential current of Phase c at node 3,7
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Figure 6. a) Differential current for three phase fault current
b) Differential current of Phase a at node 3,7
c) Differential current of Phase b at node 3,7

d)Differential current of Phase c at node 3,7
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