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Abstract
Advances in wavelet transforms and quantization methods have produced algorithms capable of surpassing the existing 
image compression standards like the Joint Photographic Experts Group (JPEG) algorithm. The existing compression 
methods for JPEG standards are using DCT with arithmetic coding and DWT with Huffman coding. The DCT uses a 
single kernel where as wavelet offers more number of filters depends on the applications. The wavelet based Set 
Partitioning In Hierarchical Trees (SPIHT) algorithm gives better compression. For best performance in image 
compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality 
and symmetry, but they cannot simultaneously possess all of these properties. The relatively new field of multiwavelets 
offer more design options and can combine all desirable transform features. But there are some limitations in using the 
SPIHT algorithm for multiwavelets coefficients. This paper presents a new method for encoding the multiwavelet 
decomposed images by defining coefficients suitable for SPIHT algorithm which gives better compression performance 
over the existing methods in many cases. 
Keywords: Wavelets, Multiwavelets, Decomposition, SPIHT
1. Introduction 
A number of methods have been presented over the years to perform image compression. However the goal is unique to 
alter the representation of information contained in an image so that it can be represented sufficiently well with less 
information. Current methods for lossless image compression typically use some form of Huffman or arithmetic coder 
(Ian H. Witten, Radford M. Neal, and John G. Cleary. 1987.) or an integer-to-integer wavelet transform (R. C. 
Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo. 1998.). To achieve a high compression factor, a 
lossy method must be used. The most popular current lossy image compression methods use a transform based scheme.  
The JPEG standard uses DCT with run-length coding of 0’s and Huffman or arithmetic coding. The JPEG 2000 
standard (ISO/IEC IS 15444-1 / ITU-T Rec. T.800) uses wavelet analysis with EBCOT bitplane encoding and 
arithmetic coding (Zixiang Xiong, Michael T. Orchard, and  Kannan Ramchandran. 1997.). Wavelet transforms allow 
additional freedom in the selection of the particular wavelet filter used; in contrast, there is only one DCT filter. And 
also the wavelet filters can be chosen depending on the images and applications.  
Both wavelet theory and methods for its application to image compression have been well developed over the past 
decade. JPEG2000 uses wavelet filters with different properties like orthogonal, symmetric and biorthogonal etc. It 
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mainly uses the Daubechies filters (Ingrid Daubechies. 1992.)( Michael Unser, Thierry Blu. 2003.). Daubechies 
wavelets are orthogonal and have compact support, but they do not have a closed analytic form and the lowest order 
families do not have continuous derivatives everywhere. All these wavelets are called as scalar wavelets since they have 
only one scaling and one wavelet function. In most cases, the scalar wavelets are failed to satisfy the orthogonal, 
symmetric, anti symmetric and biorthogonal properties simultaneously (V. Strela, P. N. Heller, G. Strang, P. Topiwala, 
and C. Heil. 1998.)( V. Strela. 1997.). This can be fulfilled by the use of multiwavelets which has more than one scaling 
and wavelet functions. Much of the current theory of multiwavelets comes from Vasily Strela (V. Strela and A. T. 
Walden. 1998.)( V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil. 1998.) ( V. Strela. 1996.) ( V. Strela. 1998.) 
( G. Strang and V. Strela. 1995.) and the members of the Wavelets Strategic Research Programme (WSRP) at the 
National University of Singapore. 
Recent literature on the subject of multiwavelets has focused mostly on development of the basic theory (Jo Yew 
Tham, Li-Xin Shen, Seng Luan Lee, and Hwee Huat Tan. 1998.)( V. Strela. 1996.)( Tao Xia and Qingtang Jiang. 
1998.)( Xiang-Gen Xia, Jeffrey S. Geronimo, Douglas P. Hardin, and  Bruce W. Suter. 1995.), methods of 
constructing new multifilters (Say Song Goh, Qingtang Jiang, and Tao Xia. 1998.), and methods for application to 
denoising and compression.  Some authors have already presented brief evaluations on the performance of 
multiwavelets for image compression using orthogonal multiwavelets, and more recently with biorthogonal 
multiwavelets (Tao Xia and Qingtang Jiang. 1998.). With the very recent work on symmetric signal extension for the 
class of symmetric-antisymmetric multiwavelets, multiwavelets can now be compared to scalar wavelets on equal 
footing in practical image compression applications. 
The most common entropy coding techniques are run-length encoding (RLE), Huffman coding, arithmetic coding (Glen 
G. Langdon Jr. 1984.), and Lempel-Ziv (LZ) algorithms. The recent papers in image compression using wavelet 
transform uses Set Partitioning In Hierarchical Trees Algorithm (SPIHT)( Amir Averbuch, Danny Lazar, and 
MosheIsraeli. 1996.)( Jerome M. Shapiro. 1993.)( Michael B. Martin, Amy E. Bell, A.A.Beex, Brian D.)( Xiang-Gen 
Xia, Jeffrey S. Geronimo, Douglas P. Hardin, and  Bruce W. Suter. 1995.). The SPIHT algorithm utilizes the structure 
of scalar wavelet coefficients (Amir Said and William A. Pearlman. 1996.). The multiwavelet coefficient structure is 
somewhat different from the scalar wavelet coefficients (Michael B. Martin, Amy E. Bell, A.A.Beex, Brian D.). Hence 
the SPIHT algorithm will not be effective when applying directly on the multiwavelet coefficients. To make it possible 
some techniques like coefficient shuffling is used (Michael B. Martin and Amy E. Bell. 2001.). New method of making 
the multiwavelet coefficients fit for the SPIHT algorithm is presented in this paper and the new method results are 
compared with the coefficient shuffling results.  

2. Background 

2.1 Multiwavelts 
Generalizing the wavelet case, the multiresolution analysis is to be generated by a finite number of scaling functions 
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r tttt )(,),(),(:)( 110

verifies a 2-scale equation 
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where {M[k]}k is a finite sequence of rr matrices of real coefficients. Construction of an orthonormal basis 
generated by )(,),(),( 110 ttt r and their integer translates where  
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with the finite sequence N[k]k of  rr  matrices of real coefficients coming by completion of {M[k]}k.
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n

nznMzM ][:)(  and
n

nznNzN ][:)( , the 2-scale equations (1) and (2) 

translate into fourier domain into 
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The behaviour of the multiscaling function can be derived by iterating the first product above. If this iterated matrix 
product converge, we get at the limit 

1

2 )0(ˆ)()0(ˆ)()(ˆ
i

j ieMM                        (4) 



Vol. 3, No. 2                                                                  Modern Applied Science

136

By assuming that the scaling functions and their integer translates form an orthogonal basis of 0V  , for 0)( Vts .
Then  
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then from 110 WVV , we get 
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and the well known relations between the coefficients at the analysis step 
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and for the synthesis 
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From these relations, the multi input multi output filter bank can be constructed.
The multiwavelet transform is implemented as a filter bank. A multiwavelet filter bank (G. Strang and V. Strela. 1995.) 
can be thought of as an M-channel filter bank with filter “taps” that are NxN matrices. The 4 coefficient symmetric 
multiwavelet filter bank is given in (10).  This filter is given by four 2×2 matrices c[k].  
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                  (10) 

Each row of the multifilter is a combination of two ordinary filters, one operating on the first data stream and the other 
operating on the second. The matrix filter coefficients satisfy the orthogonality condition 
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In the time domain, filtering followed by down sampling yields an infinite low pass matrix with “double shifts”: 
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Each of the filter taps c[k] is a 2×2 matrix. The eigen values of the matrix L are critical for the transition to wavelets – if
L has 1 as an eigen value, then there is an associated 2-element vector of scaling functions )).(),(( 21 tt
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The two GHM multiwavelet scaling functions are shown in Figure.1 and the wavelet functions in Figure.2. 

Any continuous-time function f(t) in V 0 can be expanded as a linear combination 
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The superscript (0) denotes an expansion “at scale level 0.” f(t) is completely described by the sequences vv nn
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and their coarse approximation (component in V ) is computed with the low pass part of the multiwavelet filter bank 
([11] Michael B. Martin and Amy E. Bell. 2001.):  
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Analogously, the details )1(
,2

)1(
,1 , nn ww  in 

10 VV are computed with the high pass part d[k]. 

2.2 Iteration of Decomposition  
Since multiwavelet decompositions produce two low pass sub bands and two high pass sub-bands in each dimension, 
the organization and statistics of multiwavelet sub bands differ from the scalar wavelet case. During a single level of 
decomposition using a scalar wavelet transform, the 2-D image data is replaced with four blocks corresponding to the 
subbands.  
The multiwavelets used here have two channels, so there will be two sets of scaling coefficients and two sets of wavelet 
coefficients. Since multiple iterations over the low pass data are desired, the scaling coefficients for the two channels 
are stored together. Likewise, the wavelet coefficients for the two channels are also stored together. The single level of 
decomposition for both scalar and multiwavelets are shown in Figure. 3.  
Scalar wavelet transforms give a single quarter-sized low pass subband from the original larger subband. The 
multiwavelet decompositions iterate on the low pass coefficients from the previous decomposition which is shown in 
Figure.4. In the case of scalar wavelets, the low pass quarter image is a single subband.  
But when the multiwavelet transform is used, the quarter images of low pass coefficients is actually a 2×2 block of 
subbands. Due to the nature of the preprocessing and symmetric extension method, data in these different subbands 
becomes intermixed during iteration of the multiwavelet transform (V. Strela, P. N. Heller, G. Strang, P. Topiwala, and 
C. Heil. 1998.). 
2.3 SPIHT Algorithm
The SPIHT algorithm was designed and introduced by Said and Pearlman (Amir Said and William A. Pearlman. 1996.). 
SPIHT exploit the spatial dependence by partitioning the pixel values into parent-descendent groups. 
The coder starts with a threshold value that is the largest integer power of two that does not exceed the largest pixel 
value. Pixels are evaluated in turn to see if they are larger than the threshold; if not, these pixels are considered 
insignificant. If a parent and all of its descendents are insignificant, then the coder merely records the parent’s 
coordinates. Since the children’s coordinates can be inferred from those of the parent, those coordinates are not 
recorded, resulting in a potentially great savings in the output bit stream. The parent – child relationship in this scheme 
is shown in Figure 5.  
There are three lists maintained in SPIHT encoding. List of significant pixels (LSP), List of insignificant pixels (LIP), 
and List of insignificant sets (LIS). The descendants of a node include children and grand children. Set of coordinates of 
all descendants of node (i, j) is denoted as D(i, j). Set of coordinates of  four direct offspring of node (i, j) is denoted as
O(i, j). Set of coordinates of all grandchildren of node (i,j) is denoted as L(i, j). After locating and recording all the 
significant pixels for the given threshold, the threshold is reduced by a factor of two and the process repeats. By the end 
of each stage, all coefficients that have been found to be significant will have their most significant bits recorded. 
3. SPIHT for Multiwavelets
The assumptions that the SPIHT quantizer makes about spatial relations between subbands hold well for scalar wavelets, 
but they do not hold for multiwavelets. More specifically, the three largest highpass subbands in a scalar wavelet 
transform are each split into a 2×2block of smaller subbands by the multiwavelet transform, destroying the parent-child 
relationship that SPIHT presumes. To work around this limitation, there is a method in the thesis of Michael B. Martin 
(Michael B. Martin and Amy E. Bell. 2001.), referred as coefficient shuffling which presents a new quantization 
method that allows multiwavelet decompositions to receive most of the benefits of using a quantizer like SPIHT. 
3.1 Coefficient Shuffling 
The basic idea is to try to restore the spatial features that SPIHT requires for optimal performance. Examination of the 
coefficients in a single-level multiwavelet transform reveals that there generally exists a large amount of similarity in 
each of the 2×2 blocks that compose the jiji LHHL ,  and ji HH  subbands, where i=1, 2 and j=1, 2.  

The coefficient shuffling explains the method of rearranging the 2×2 block so that the coefficients corresponding to the 
same spatial locations are placed together. A clearer picture of this is given in Figure. 6. The remaining coefficient data 
has the same structure as that of 4-level scalar wavelet decomposition. Solid lines denote new subband boundaries and 
dashed lines show subband boundaries that are removed by coefficient shuffling.  
In this method of coefficient shuffling, the multiwavelet decomposed structure has been altered for implementing 
SPIHT algorithm. After this process, the spatial relationship of scalar wavelet decomposition is gained in multiwavelet 
also. Hence, the SPIHT algorithm can be applied for this structure with the usual parent – child relationship. The 
experimental results using this coefficient shuffling method are giving some better performance over the scalar wavelet 
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based compression (Michael B. Martin and Amy E. Bell. 2001.). Still it has the performance lack in some type of low 
frequency images in terms of blocking artifacts. 
3.2 Proposed Method
In the coefficient shuffling method, some of the bandpass properties of the coefficients are shuffled with the highpass 
and lowpass coefficients. 
Hence, visual artifacts can be noted in the reconstructed images. In this paper, we propose a new method for making the 
multiwavelet structure, applicable for SPIHT algorithm without mingling the bandpass coefficients with the highpass 
coefficients. This process utilizes the conventional multiwavelet decomposition along with the coefficient shuffling.  
The horizontal and vertical detail coefficients have their own importance in the reconstruction with same filters used for 
decomposition. In this method, the decomposition using multiwavelet is done on the entire 2x2 block coefficients of the 
lowpass filters 1L and 2L . i.e. the four subbands 122111 ,, LLLLLL  and 22 LL  are considered as approximate 
coefficients. These four subband coefficients are rearranged and then processed for the second level of decomposition. 
The multiwavelet used here is GHM multiwavelet with two scaling and two wavelet functions. There are two lowpass 
and two highpass filters for decomposition and reconstruction. In each decomposition level, there are four main 
subbands with their own four subbands as the output of the combination of the filters. Though the coefficient shuffling 
make the multiwavelet decomposition structure as like the scalar wavelet structure, the combined output of the inner 
subband coefficients of multiwavelet structure are scattered in the SPIHT encoding. Hence there is large number of 
blocking artifacts in the reconstructed images, and it is more in natural images (Michael B. Martin and Amy E. Bell. 
2001.).  
To minimize the artifacts, the shuffling part is avoided for the detailed coefficients in the multiwavelet decomposition. 
The iteration of decomposition is done until we get the 4x4 matrix as the approximate coefficients. Hence the horizontal, 
vertical and diagonal details also have the order of 4x4.  
At this point, in the approximate 4x4 matrix, the lowest subband element from the filter combination 11LL  is 
considered as the root value without any descendants. Even though the other three coefficients in the same subbands are 
approximate coefficients, they are considered as detail coefficients for satisfying the SPIHT structure. Then the other 
three lowest detail subbands are assigned as the children of these three coefficients as like scalar wavelet structure. This 
is shown in the Figure.8. The dotted lines denote the outputs of the four combinations of the two filters.  
In Figure.8, the four coefficients marked by a circle and squares are approximate coefficients of the final level of the 
decomposition. In this method only one coefficient which is having the highest coefficient value marked by the circle is 
considered as approximate coefficient and the other three coefficients having the values just less than the highest 
approximate coefficient are considered as detail coefficients. Here, the actual detail coefficients are assigned as the 
children of the assumed detail coefficients. Hence the parent child relationship is converted exactly like the scalar 
wavelet structure. Here the same SPIHT code is applied with these considerations and the results are compared. 
4. Experimental Results 
Image compression experiments using GHM multiwavelet were conducted in both the coefficient shuffling method and 
the new method. The results of GHM multiwavelet with coefficient shuffling is denoted by GHM(CS) and the new 
proposed method is denoted as GHM(N). 
Objective results are given in the form of tables of peak signal-to-noise ratio (PSNR) values. Since all tests here are 
performed on 8-bit grayscale images, the peak signal value is 255. Hence the PSNR values in dB for an M×N image 
signal x  and its reconstruction x̂  are calculated via  

MSE
PSNR

2

10
255log10                                    (16)   

where the mean squared error (MSE) is defined as 
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For each image, three scalar wavelets, a multiwavelet with coefficient shuffling and the new method are tested and the 
results are compared at different compression ratios. The compression results of different images with different filters 
are given in the table. The first column gives the image and the second gives wavelet type. The third column gives the 
PSNR values in dB for that particular image at various compression/bit rates. The bit rates used here correspond to 8-bit 
grayscale images, so the number of bits per pixel (bpp) is 8 divided by the compression factor. The test results are given 
for 1.0bpp (8:1), 0.5 bpp (16:1), 0.25 bpp (32:1), or 0.125 bpp (64:1). 
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The PSNR results for the natural images are given in the Table 1. The natural images contains more low and medium 
frequency components and also have different type of image structures like straight, curves and surface planes etc. From 
the results, the new proposed method with GHM multiwavelet outperforms the multiwavelet with coefficient shuffling 
method in all the cases. It also gives better compression over the scalar wavelets in most of the cases. 
The PSNR results for Synthetic images in Table 2 show that the multiwavelets are not that much efficient as the scalar 
wavelets. Here, for these high frequency components the scalar wavelets are showing very good performance over the 
multiwavelet methods. Even in some cases, the scalar wavelets are giving lossless compression. Also for the synthetic 
images for the compression rates considered, the GHM multiwavelet with the new method again giving much better 
performance than the GHM multiwavelet with the coefficient shuffling method. 
5. Conclusion 
The performance of multiwavelets in general depends greatly on the image characteristics. For the natural test images, 
the new method of multiwavelet decomposition and coefficient definition introduced in this paper gives a better 
performance in many compression rates over the scalar wavelets and the multiwavelet with coefficient shuffling method 
of encoding. The synthetic images are having more high frequency components. For these types of high frequency 
images the multiwavelet methods are failed to make over the scalar wavelets. While the shuffling method and the new 
method present here help standard multiwavelet decompositions work better with zerotree-based quantizers for natural 
images and synthetic image results are still at a disadvantage. A design of a new multiwavelet with various required 
mathematical properties could come with a great performance both in natural and synthetic image cases. 
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Table 1. PSNR Results for Natural Test Images 
Image wavelet 1.000 bpp 0.500 bpp 0.250  bpp 0.125 bpp 

Mandrill

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS)

31.733

32.430 

31.890 

42.668 

20.419

30.603

30.852 

30.513 

37.223 

17.647

29.980

30.069 

29.940 

35.942 

16.905

29.724 

29.774 

29.593 

31.517 

16.460

Boat 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS)

39.211

40.902 

40.159 

42.969 

21.943

35.421

36.566 

36.026 

37.057 

18.334

33.666

34.039 

33.850 

36.625 

17.282

32.565 

32.481 

32.393 

31.326 

16.936 

Camera man 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS)

38.176

38.145 

37.147 

42.724 

21.961

34.554

34.355 

34.117 

37.331 

18.557

33.392

32.798 

32.685 

31.264 

17.621

32.759 

32.073 

31.524 

30.987 

17.198 

Texture 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS)

29.221

30.339 

30.348 

36.728 

15.825

28.320

29.220 

29.170 

30.794 

13.741

27.856

28.413 

28.512 

25.553 

12.574

27.680 

27.995 

28.054 

24.374 

10.800 

Lena 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS)

40.526

42.474 

41.448 

42.782 

22.790

36.762

39.088 

38.554 

37.073 

19.613

34.715

36.202 

35.903 

36.836 

18.234

33.295 

34.252 

34.070 

31.483 

17.822 
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Table 2. PSNR Results for Synthetic Test Images 

Image wavelet 1.000  bpp 0.500 bpp 0.250  bpp 0.125 bpp 

Gray21 

Haar

Db4

Bior 3.7 

GHM(N 

GHM(CS) 

48.032 

25.448  

79.961 

99.306 

37.096 

20.471 

55.588 

58.167 

36.691 

18.501 

72.108 

47.986 

47.245 

31.374 

17.752 

Testpat

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS) 

34.788 

34.299 

34.962 

37.076 

15.960 

32.505 

31.677 

32.046 

31.183 

13.634 

31.409 

30.426 

30.507 

25.652 

12.853 

29.718 

29.532 

29.520 

25.431 

11.913 

Ruler 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS) 

36.072 

30.317 

31.251 

30.805 

13.074 

31.703 

28.788 

31.321 

29.697 

10.733 

29.547 

28.713 

29.170 

25.668 

8.738 

27.762 

27.673 

27.099 

25.393 

8.074 

Barchart 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS) 

44.156 

37.887 

38.201 

36.890 

15.342 

36.925 

33.239 

33.317 

31.182 

13.094 

33.134 

31.473 

31.374 

29.806 

12.458 

31.700 

30.401 

29.930 

25.186 

12.045 

MRI 

Haar

Db4

Bior 3.7 

GHM(N) 

GHM(CS) 

41.108 

41.779 

39.939 

44.601 

35.013 

36.618 

37.205 

36.562 

39.253 

28.963 

34.915 

35.373 

35.139 

33.964 

26.391 

34.103 

33.991 

34.280 

32.757 
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Figure 1. Geronimo–Hardin–Massopust pair of scaling functions 

Figure 2. Symmetric GHM pair of wavelet functions 

(a)                          (b) 

Figure 3. Single level decomposition structure for (a) scalar wavelets and (b) multiwavelets 

Figure 4. Iteration of multiwavelet decomposition. 
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Figure 5. Illustration of parent–child relationship 

Figure 6. Illustration of coefficient shuffling 

Figure 7. Subbands in 2-level multiwavelet decomposition after coefficient shuffling 

Figure 8. Parent – child relationship of multiwavelet decomposed structure 
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