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Abstract 
Unreinforced masonry (URM) is known as sustainable building material and is on the top of worldwide building 
materials consumed in residential buildings. The reliability level of a designed URM shear walls (URMW) has 
major influence on safety and cost of masonry constructions. Assessing the reliability level of different URMW 
is the purpose of this paper. 
The verification methods for combination of in-plane shear and compression according to the latest version of 
German National Annex of Eurocode 6are presented. The design models available in the code are rephrased and 
direct deterministic equations are introduced to predict the capacity. Limit State and Reliability Verification of 
URM Wall. 
On this base, several limit state are established and reliability analysis using crude Monte Carlo method are run. 
The effect of uncertainty on assessed reliability is highlighted. The distinction between linear and non-linear 
application of partial safety factors are assessed. The result of reliability analysis, based on the available 
probabilistic information on material with uncertainty models for designed URMW is presented in the article. 
The principal results are the actual reliability level found in the study regarding various masonry walls designed 
according to the latest German National Annex code DIN EN 1996-1-1 /NA: 2012-05 on different load situation. 
A review on the common target reliability index for structures according to different codes is done and the 
assessed reliability is compared with the target value. 
Keywords: reliability, uncertainty, unreinforced masonry, shear wall, Eurocode 1996 
1. Introduction and Literature Review 
Perhaps, the main function of structural Unreinforced Masonry Wall (URMW) is carrying the axial load. The 
behavior of URMW under a pure axial force (centric load) has been and is the subject of many scientific 
assessments. However, in real boundary condition, the interconnection of other structural elements (like floor 
slab effect on wall) or external horizontal forces (like wind load) may cause some eccentricity, in-plane or 
out-of-plane of URMW. 
Gardoni, Der Kiureghian, and Mosalam (2002) defined a “model” as a mathematical expression in relation to 
one or more quantities of interest. For instance the capacities of structural component, built by a set of finite 
basic variables (ݔଵ , , ଶݔ . . . , ௡ݔ  ), such as material property constants, member dimensions, and imposed 
boundary conditions. The main purpose of this model is to provide the means for predicting the quantities of 
interest for the given deterministic or random values of the basic variables. This definition is considered proper 
for the current study and the term “model” will be used for any mathematical relationship of shear capacity 
prediction of URMW.   
Deterministic models are required not only for URMW design but also for probabilistic and Fuzzy assessment. 
Without deep understanding of structural behavior and having explicit deterministic models to predict the 
URMW load bearing capacity, the full probabilistic and fuzzy analysis will not lead to a credible outcome. 
Generally, in order to calculate the shear capacity of URMW, numerical methods and solver software are 
required.   
Despite significant use of masonry constructions in relation to other building materials, the number of reliability 
studies on masonry structures are few. Moreover, the available studies on reliability of structural masonry are 
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mostly limited to the basic models only (cf. Ellingwood (1980)). In recent years, the need for reliability studies 
on masonry is underlined. Nevertheless, most of the studies focus on masonry under axial forces.  
An extensive study searching for a general methodology to obtain objective safety values for existing structures 
is run by Luc Schueremans (2001), where the found methodology is applied on unreinforced historical masonry 
structures under axial forces. L. Schueremans, van Gemert, and Maes (1999), adopted a combined model to 
evaluate the reliability of structural masonry elements through First Order Reliability Method (FORM) together 
with the response surface technique. For four material properties stochastic parameters in a non-linear finite 
element analysis of masonry shear wall is applied. Partial safety factors are omitted to allow these models to be 
used as the limit state formulation in a probabilistic approach. 
Stewart and Lawrence (2002) have developed preliminary proof-of-concept techniques to estimate the structural 
reliability of masonry walls for vertical one-way bending and compression loading (see also Lawrence and 
Stewart (2008) and Stewart and Lawrence (2007)).  
The studies run on masonry walls subject to in-plane or out of plane shear forces, which are the basic structural 
elements for the stiffening of a building against horizontal forces, are rare: Glowienka (2007) and Brehm (2011) 
developed some models to evaluate the structural reliability of masonry shear walls, Glowienka (2007) and 
Graubner and Glowienka (2008) run reliability analysis on masonry walls made of large size units and thin layer 
mortar.  
SAKO report (SAKO, 1999) and the Expert Review on SAKO are interesting developments on load combination 
for Eurocode 1990 based on the reliability analysis. In the report, a conventional model is developed named as 
GENERIC model. The resistance part is material independent cross-section of a structural member; which can be 
replaced by any steel, concrete or masonry structural members. The model is loaded by three mutually 
independent actions: a permanent load, G, an imposed load, Q and climatic action, W (the characteristic values, ܩ௞, ܳ௞ and ௞ܹ denote the appropriate load effects, respectively). In the report the linear behavior for structural 
members and actions are assumed.  
The economic design which is ܴௗ =  ௗ conducted. In case of generic structural member, the characteristicܧ 
value ܴ௞ of the resistance R may be defined as the 5% fractile of R. The limit state model is presented as: ݃(ܺ) =  ܴ – =  ܧ ଴ܩ) ாߠ – ܴ  + ܳ଴ + ଴ܹ)                        (1) 
where, ߠ is the uncertainty in the action effects. The study is run to determine the design value of load effect 
with three alternative combination rules provided in EN1990 (EN, 2009). The following single Eq.  covers all 
the three combination rules provided in EN 1990: ܧௗ = ߦ  ∙ ீߛ ∙ ௞ܩ ொߛ + ∙ ߰ொ ∙ ܳ௞ ௐߛ  + ∙ ߰ௐ ∙ ௞ܹ                    (2) 
The results reproduced by FORTRAN routines for Rackwitz-Fießler algorithm (Level II) and full-probabilistic 
method (Level III) run by these authors are illustrated in Figure 2 and Figure 3. In this study two load ratios ߯ = (ܳ௞ + ௞ܹ) ௞ܩ) + ܳ௞ + ௞ܹ)⁄  and ߢ = ௞ܹ ܳ௞⁄  are assumed. 
Despite all the efforts, little progress is made in reliability assessment of masonry structure and there is still 
enough room to study accurate evaluation of masonry structural reliability.  

The focus of this study is mainly on the reliability of masonry walls subjected to in-plane shear forces. Here first, 
the target reliability in structural design is reviewed and next the procedure and required statistical data to build 
the specific limit state for URM shear wall is explained. The deterministic prediction models form German codes 
and Eurocode are taken for resistance part. The result of the recommended probabilistic uncertainty models are 
multiplied by the prediction models to obtain the realistic outcome. Adopting the recommended probabilistic 
action models as well as uncertainty models’ different limit states are established and a comprehensive reliability 
analysis is conducted. Finally the comparative reliability level for URMW according to the different points of 
view is demonstrated. 
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Figure 1. Reliability index β versus χ assuming EN combination rules for G, Q and W; for κ= 0.75, cov.R = 

0.10 

 
Figure 2. Reliability index β versus χ assuming EN combination rules for G, Q and W; for κ= 0.75, cov.R = 0.15 
 
1.1 Structural Target Reliability Index 
Target reliability values balance the increasing cost and the existing levels of safety. In this context, different 
codes encompass detailed specifications. The proposed target reliability index in JCSS (2011) for ultimate limit 
states is tabulated in Table 1. The values in this table are obtained based on cost benefit analysis for the 
characteristic and representative but simple example structures and are compatible with calibration studies and 
statistical observations.  The proposed target reliability index according to ISO 2394 (1998) is tabulated in 
Table 2. 
 
Table 1. Tentative target reliability indexes, β (and associated target failure rates), related to 50 years reference 
period and ultimate limit state JCSS (2011) 

 Reliability indexes, β, according to consequences of failure 
Relative cost of safety measure minor moderate major 
A (large) 1.7 2.0 2.6 
B (medium) 2.6 3.2 3.5 
C (small) 3.2 3.5 3.9 

 
Table 2. Tentative target reliability indexes, β (and associated target failure rates), related to 50 years reference 
period and ultimate limit state JCSS (2011) 

 Reliability indexes, β, according to consequences of failure 
Relative cost of safety measure small some moderate great 
high 1 1.5 2.3 3.1 
moderate 1.3 2.3 3.1 3.8 
low 2.3 3.1 3.8 4.3 
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Ravindra, Heaney, and Lind (1969) proposed a probabilistic code calibration method and set the target reliability 
to ்ߚ = 2.71 in order to determine the desired partial safety factor code in approximately the same safety level 
as what was available in the Canadian code then. Cornell (1969) found that value of ்ߚ = 4.0 is consistent with 
certain codes. Luc Schueremans (2001) reviewed some national and international codes for associated life time 
such as EC1: 1994; ISO 2394: 1998; ISO 12833: 1997; NBCC-part 4: 1990; NEN6700: 1997 and reported target 
reliability values as ்ߚ  =  3.8;  3.8; 3.8;  3.6;  3.5, respectively. Stewart and Lawrence (2007) reported target 
reliability values for new Australian limit states codes as ்ߚ  =  3.5 − 4. Vrouwenvelder (2002) recounted some 
developments towards full probabilistic design codes including target reliability and probabilistic models for 
different basic variables. Another recommendation according to the former German standard DIN 1055-100 
(DIN, 2006) is ்ߚ,ଵ =  4.7 for the first year observation and ்ߚ,ହ଴ =  3.8 for an observation period of 50 years. 
In single cases, the values may be reduced to ்ߚ =  3.2.  
Target values of reliability index in DIN EN 1990:2002 (DIN, 2011) for various design situations, and for 
reference periods of 1 year and 50 years, are tabulated in tables 3 and 4. The values of ்ߚ  in tables correspond 
to levels of safety for reliability class RC2 (see DIN EN 1990:2002 (DIN, 2011) Annex B) structural members. 
 
Table 3. Target reliability indexes, β, related to life time reference period and ultimate limit state DIN EN 
1990:2002 for Class RC2 structural members (DIN, 2011) 

 Reliability indexes, β, according to consequences of failure 
Relative cost of safety measure small some 
Ultimate 4.7 3.8 
Fatigue - 1.5 to 3.8 * 
Serviceability (irreversible) 2.9 1.5 

 * depends on degree of inspectability, reparability and damage tolerance 
 
Table 4. Target reliability indexes, β, related to life time reference period and Reliability Class, DIN EN 
1990:2002 table B2 (DIN, 2011) 

 Minimum reliability indexes acc. to Reliability Class 
Reliability Class * 1 year 50 years 
RC1 5.2 4.3 
RC2 4.7 3.8 
RC3 4.2 3.3 

* Three reliability classes RC1, RC2 and RC3 may be associated with the three consequence classes CC1 
(Low), CC2 (Medium) and CC3 (High). For more information see (DIN, 2011) 
 
It should be noted that the partial factors given in EN 1990 up to EN 1999 generally lead to a structure design 
with a β value greater than 3.8 for a 50 years reference period. In this study ߚ = 3.8 is chosen as the target 
value. However, in every design or verification, the target value is rarely met and nearly all the assessed 
reliability are either lower (not safe) or higher (not economy) than that of the target value. According to the 
authors opinion, an individual real number (்ߚ  ∈ ℝ) may not represent the structural target reliability adequately. 
Instead, introducing an interval such as (ߚ ∈ , ௠௜௡,்ߚൣ ௠௔௫൧,்ߚ  ⊂ ℝ) may be more appropriate for this 
requirement.  
2 Limit State and Reliability Verification of URM Wall 
Mann and Müller (1978) proposed the theory of shear failure in masonry walls and later expanded their theory 
(Mann & Müller, 1982), several principal failure criteria are counted:  

• Friction failure of the bed joint,  
• Tensile failure (cracking) of the units, 
• Overturning of single unit,  
• Compression failure of masonry (crashing). 

Two other failures criteria are explicitly mentioned by other researchers (cf. Kranzler (2008)). 
• Flexural (bending) failure of masonry,. 
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• Shear compression failure of masonry,  
In German National Annex of masonry design code DIN EN 1996-1-1/NA: 2012 (DIN, 2012), the main failure 
modes are the friction failure of bed joint and the diagonal tension failure in units. Moreover, depending on 
geometry of units and wall and properties of the mortar, two other failure modes namely shear compression 
failure and overturning of single unit are considered in this code. It should be noted that, the in-plane flexural 
failure is not explicitly expressed in the code, but it should be considered in design. 
The design value of the shear resistance for friction failure and tensile failure of units is given by: 

ாܸ஽ ≤ ோܸௗ௟௧ =  ௙ೡೖఊಾ ∙ ௧௖ ∙ ݈௖௔௟                                (3) 

where, ܿ is shear stress distribution factor and is assigned as:  1.0                       for        ℎ/݈ ≤ 1 0.5(1 + ℎ/݈)     for     1 < ℎ/݈ < 2 1.5                       for       ℎ/݈ ≥ 2; 
and ݈௖௔௟ is the computational compressive length of wall. Under wind load action, ݈௖௔௟ is calculated through: ݈௖௔௟ = min (ଽ଼ ∙ ݈௪ , ସଷ ∙ ݈௖,௟௜௡)                                (4) 

in any other load actions, it is calculated through: ݈௖௔௟ = ݈௖,௟௜௡                                            (5) 
where, ݈௖,௟௜௡  is the compressed length of wall. The Eq. (4) could be expanded in a mathematic manner to the 
following Eq. s: ݈௖௔௟ = 1.125. ݈௪                        ݂ݎ݋       ௘௟ ≤ ଻ଷଶ                              (6) 

݈௖௔௟ = 2. (݈௪ − 2. ଻ଷଶ        ݎ݋݂                (݁ < ௘௟ ≤ ଵଶ                          (7) 

In contrast with ݈௖,௟௜௡ in Eurocode 6, which defines the border of cracked and un-cracked state, in ݈௖௔௟  no 
physical character is of concern. The computed shear capacity of masonry wall up to 30% mathematically is 
enlarged; in other word, this is an implicit reduction of safety margin. 
2.1 Shear Friction and Tensile Failure due to EC6/NA: 2012-05 
In EN 1996-1-1/NA (DIN, 2012), the characteristic shear strength of masonry ( ௩݂௞) for in-plane shear when 
meets the requirements of mortar joint may be taken from the minimum of Eqs. (8) and (9). The Eq. (8) 
determines the friction failure: ௩݂,௙௥௖ = ߙ ∙ ௩݂௞଴ + 0.4 ∙  ஽                                     (8)ߪ
 
and in case of tensile failure of units the limit value is extracted from: 

௩݂,௧௘௡ = 0.45 ∙ ௕݂௧,௖௔௟ ∙ ට1 + ఙವ௙್೟,೎ೌ೗                          (9) 

where, ௩݂௞଴ is the characteristic initial shear strength of masonry, that should be determined from tests or the 
table NA.11 in the code, ߙ  is a coefficient for initial shear strength of masonry, the head joint situation 
considered, ௕݂௧,௖௔௟  is the computational tensile strength of unit assumed as a fraction of unit compressive 
strength, ௕݂௖, (from the table NA.3) and in the NA section “NDP zu 3.6.2 (3)” it is assumed as: ௕݂௧,௖௔௟ =  0.020 ∙ ௕݂௖ for hollow concrete blocks, ௕݂௧,௖௔௟ =  0.026 ∙ ௕݂௖ for vertically perforated clay bricks with finger holes or grippers, ௕݂௧,௖௔௟ =  0.032 ∙ ௕݂௖ for solid blocks without finger holes or grippers, ௕݂௧,௖௔௟ = ଴.଴଼ଶଵ.ଶହ ∙ ଵ଴.଻ାቀ೑್೎మఱ ቁబ.ఱ ∙ ௕݂௖  for AAC blocks with ܮ ≥  498 ݉݉ and ܪ ≥  248 ݉݉, 
and ௕݂௖  is the calculated mean compressive strength.  
The direct shear capacity regarding to the friction criteria for economic design, ாܸ஽ =  ோܸௗ, could be derived. 
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Eqs. (8) and (4) are implemented in Eq. (3) and the explicit mathematical Eq.  to calculate the shear capacity in 
semi format for an interval of  7/32  ≤   ݁/݈  ≤   1/2,  is proposed as follows:  

ோܸௗ,௙௥௖,ଷ = ଵ.ହ∙ఈ∙௙ೡೖబା଴.ସ∙௡∙௙ೖ଴.଻ହ∙௖∙ఊಾାయ೙∙ഀ∙೑ೡೖబ೑ೖ ∙೓ೢ೗ೢ ∙ ݐ ∙ ݈௪                          (10) 

Analogues to friction, the direct formulation for tensile failure of units is computed according to EC6/NA: 
2012-05. 
2.2 Shear Compression Failure due to EC6/NA: 2012-05 
The shear compression failure occurs when the compressive strength exceeds in the diagonal strut. The units’ 
overlap is very important in this failure mode since it determines the angle of the diagonal compression. For 
element masonry with thin layer mortar in bed joint and overlap of ݈௢௟ ℎ௨⁄ < 0.4 and high axial forces, the 
shear resistance at the base of the wall, in addition to detection by friction failure and tensile failure, is limited 
due to shear compression failure according to Eq (11).  

ோܸௗ = ଵఊಾ∙௖ ∙ ݐ) ∙ ݈௖ ∙ ௞݂ − ெߛ ∙ ாܰ஽) ∙ ௟೚೗௛ೠ                               (11) 

where,  ݈௖ =  (݈௪ − 2e). The direct relationship in semi format is: 

ோܸௗ = (ଵିఊಾ∙௡)∙௧∙௟ೢ∙௙ೖఊಾ∙௖∙೓ೠ೗೚೗ାమ೙∙೓ೢ೗ೢ                                 (12) 

2.3 Overturning of Single Unit due to EC6/NA: 2012-05 
For element masonry with un-grouted head joints and aspect ratio of ℎ௨ >  ݈௨   failure on single unit could 
occur at the opening of bed joint. Thus, in addition to the Eq. (3) (and if necessary according to (11)) shear 
resistance according to Eq. (13) is limited.  

ோܸௗ = రయఊಾ ∙ ቆଵା೓ೢ೓ೠଶ∙೓ೢ೓ೠ ቇ ∙ ௟ೠ௛ೠ ∙ ݊ ∙ ݐ ∙ ݈௪ ∙ ௞݂                               (13) 

This failure mode depends only on dimensions. In order to consider material uncertainty, the correction factor 4/3 = 1.33 is included.  
The behaviour of different shear failure types for an exemplary clay brick wall according to the DIN EN 
1996-1-1/NA (DIN, 2012) is illustrated in Fig  3.  

 

Figure 3. Performance of different shear failures criteria for an exemplary URMW 
 
“Constructing a stochastic model of variables means establishing a representation of their variability by the 
best-suited probability density”, according to Lemaire (2010). In the reliability analysis, information about 
statistical properties of the variables involved in the limit state function, Eqs. (14), for both the action and the 
resistance side are required. The resistance part in this study is obtained by prediction shear capacity due to 
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different failure modes. The involved uncertainty in resistance, ߠ௏ோ஽  is the difference between observed 
capacity, ௢ܸ௕௦, from an experiment with applied vertical load , ௢ܰ௕௦ and predicted value from code, ௣ܸ௥ௗ, for the 
same vertical load. The information on all basic variables are summarized in Table 5. g(x ≤ 0) = ோܸ஽ ∙ ோ஽ߠ − ாܸ஽ ∙  ா஽                                     (1)ߠ
In general limit state especially resistant part, ( ோܸ஽ ∙ ߠோ஽), is combination of several basic variables each with 
different statistical distributions, therefore the outcome may be a “Mixture distribution” and may not represent a 
known statistical distribution.  
3. Reliability Level of Designed URMW  
The reliability level of designed unreinforced masonry shear wall according to DIN EN 1996-1-1/NA (DIN, 
2012), corresponding to the Shear Compression Failure with respect to EC6/NA: 2012-05  the exemplary walls 
made of Clay Brick (CB), Calcium Silicate (CS) and Autoclaved Aerated Concrete (AAC) are assessed. In this 
section to consider uncertainty in resistance model, lognormal distribution is applied. Different software 
packages are available for reliability analysis. In this study, in order to calculate the failure probability, several 
subroutines in MATLAB are written using crude Monte Carlo method. Among the researchers it is accepted that 
the increasing the number of trails (݊ → ∞) will improve the accuracy of probability of failure. However, it is 
observed that the number of trails has significant influence on the consumed time. 
3.1 Effect of Non-Linear Partial Factor on this Model 
The deterministic performance of shear wall and the probabilistic behaviour are illustrated in Fig. 4. In this 
figure, ܸܴ݀ (ߛெ = 1) represents the deterministic behaviour of URMW over the possible normal load interval 
(0 < ݊ா஽ <  is obtained by introducing the random values of basic variables into the same (ݏ݉݋݀݊ܽݎ)ܴܸ ;(1
deterministic model. One of the interesting aspect here is the influence of uncertainty model, ߠ௏ோ, which will 
shift the ܸܴ(ݏ݉݋݀݊ܽݎ) to new position of ܸܴ ∗ ௏ோߠ . Meanwhile, ߠ௏ோ  changes the scatter of predicted 
capacity. Ideally, each dot corresponds to the capacity of a real URMW for certain normal load (݊ா஽(݅)). The 
curve ܸߛ)ܦܧெ = 1.5)  represents the deterministic design procedure by implementing ߛெ = 1.5  in the 
deterministic model. The curve ܸܧ௠௘௔௡  identifies the wind mean value. Finally, the red cross marks signify 
the product of random wind load and random wind uncertainty, ܸܧ௠ ∗  .௏ாߠ
 

 
Figure 4. Deterministic and random performance of clay brick URMW designed due to DIN EN1996-1-1/ NA 

 
Another intriguing feature is the graphical appearance of non-linear effect of partial factor in the model. As 
observed, applying partial factor in a linear manner, (e.g. applying ߛௐ for mapping the design curve to wind 
load curve), only decrease the values in direction of y-axis. On the contrary applying partial factor in a 
non-linear method, will shift both coordinates of the original curve. As a result, for the case of URMW 
verification, applying ߛெ in deterministic model will shrink the possible normal load interval to 0 < ݊ா஽ ெߛ/1> ≅ 0.67.  
Another consequence is misrepresentation of the designed structure behavior. Consider that the CB 1 wall needs 
to be verified for normal load of n=0.6. For the real URMW, n is acting favorably and the capacity is increasing 
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according to diagonal tensile curve while, the design and the wind load curves show that the n is acting 
un-favorably and the capacity is decreasing according to flexural curve (for n>0.667 with wind load); this means 
that this model is of higher resistance and lower action. Consequently, the number of failures drop sharply and 
will influence the reliability calculation. The assessed reliability curves are presented in Fig. 5. The information 
on assumed basic variables is tabulated in Table 5. 
 
Table 1. Statistical values assumed for basic variables in URM reliability evaluation (Montazerolghaem, 2015) 

Basic variable Symbol Material Distribution  .ݒ݋ܥ ݊ܽ݁ܯ
Masonry compressive strength ௞݂ All Lognormal μ௙ 10% 
unit calculated tensile strength ௕݂௧,௖௔௟ All Lognormal μ௙௕௧,௖௔௟ 20% 
Coefficient of friction μ All Deterministic 0.6 -- 
Initial shear strength ௩݂௞଴ All Lognormal μ௙௩଴ 35% 
Normal force ாܰ஽ All Normal μ௡ 10% 
Wind load ாܸ All Gumbel μ௏ா 20% 
Uncertainty of wind load ߠ௏ா All Lognormal 1 10% 
Uncertainty of Shear resistance ߠ௏ோ AAC Lognormal 0.9367 24.2% 
Uncertainty of Shear resistance ߠ௏ோ CB Lognormal 1.266 18% 
Uncertainty of Shear resistance ߠ௏ோ CS Lognormal 1.0297 21.2% 

 

 

Figure 5. Reliability of cantilever URMW (ψ= 1) designed according to DIN EN1996-1-1/ NA 

 
3.2 Applying the Partial Factor in Linear Manner in the Model 
A linear approximation method that may be used as an alternative case for a non-linear problem is illustrated in 
Fig 6. In this method, a linear projection of  ߛெ · ெߛ  is applied to determine the resistance model. The curve ܦܧܸ ∗  represents the deterministic approximate resistance model (black line) and the blue dots represent the ܦܧܸ
random behaviour. The procedure to obtain wind load is the same as previous section. The evaluated reliability 
level is presented in Fig 7. The advantage here is that the resistance model and action model are in harmony in 
their performance. However, the linear projection does not match exactly with the real deterministic curve, 
which in general would lead to higher assessed reliability. Meanwhile, in case of flexural failure (last section of 
the curve), the resistance drops sharply (with a quadratic ݊). Thus, the loss of resistance is much higher than 
reduction in action, that leads to a sharp fall down in the assessed reliability curve’s. 
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Figure 6. Deterministic and approximate random performance of URMW designed due to DIN EN1996-1-1/ NA, 

test No. CB 1 

 

Figure 7. Reliability of cantilever URMW (ψ= 1) designed due to DIN EN1996-1-1/ NA, approximate method 1 
 

3.3 Effect of Model Uncertainties on Reliability Assessments 
The reliability behaviour of the previous masonry shear walls based on the best-fitted uncertainty distribution of 
the refined database (Montazerolghaem & Jäger, 2015) are evaluated. The following table contains the assumed 
basic variables for the resistance uncertainty model. The other basic variables and procedures are taken from 
previous section. 
 
Table 6. Statistical values assumed for basic variables in URM reliability evaluation (Montazerolghaem, 2015) 

Basic variable Material Distribution Mean Cov. 
Uncertainty of Shear resistance AAC Weibull(3P) 0.9331 21.6% 
Uncertainty of Shear resistance CB Gumbel min 1.24 17.2% 
Uncertainty of Shear resistance CS Weibull 1.097 14.2% 

 
The uncertainty model influences on the evaluated reliability considerably. In case of AAC, the uncertainty 
models are almost the same; therefore, the evaluated reliability remain unaffected, Fig. 8. In case of CS, the 
coefficient of variation is reduced; thus higher reliability is expected. This effect is obvious in evaluated 
reliability of CS in Fig. 9. In case of CB, the type of uncertainty distribution changes. The lognormal distribution 
(with μ > 1) has an increasing right tail (positive skewness), in contrast, the Gumbel-min holds a decreasing left 
tail (negative skewness). The effect of model uncertainties on Reliability of URMW with CB is illustrated in 
Fig. 10. 
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Figure 8. The effect of model uncertainties on reliability of URMW with AAC 

 

 

Figure 9. The effect of model uncertainties on reliability of URMW with CS 
 

 

Figure 10. The effect of model uncertainties on reliability of URMW with CB 
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4. Conclusion 
The effect of random variation in data, which is named aleatory uncertainty, is studied. It is found that the model 
adopted to describe (aleatory) uncertainty has significant influence on the reliability level of URM wall. For the 
case of AAC the reliability level remain almost the same, but in case of CS, updating the uncertainty model 
increase the reliability level while for the case of CB it has adverse effect. Unfortunately, in many engineering 
problems (e.g. masonry structural elements) sufficient information does not exist to establish probabilistic model. 
The verification models, especially in full probabilistic analysis can produce inaccurate output; thus, in order to 
select the appropriate uncertainty model extreme caution should be paid.  
The effect of linear and/or non-linear implementation of partial factors is studied as well. Although, different 
deterministic verification methods may not provide significant difference in the outcomes, but this effect is 
obvious in a reliability analysis. 
Finally, the reliability of different unreinforced masonry walls based on a full probabilistic analysis, according to 
current German national Annex of EC6 is assessed.  
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