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Abstract 

This study examines the use of independent group test of comparing two or more means by using parametric 
method, such as the Alexander-Govern (AG) test. The Alexander-Govern test is used for comparing two or more 
groups and is a better alternative compared to the James test, the Welch test and the ANOVA. This test has a good 
control of Type I error rates and gives a high power under variance heterogeneity for a normal data, but it is not 
robust for non-normal data. As a result, trimmed mean was applied on the test under non-normal data for two 
group condition. But this test could not control the Type I error rates, when the number of groups exceed two 
groups. As a result, the MOM estimator was introduced on the test, as its central tendency measure and is not 
influenced by the number of groups. But this estimator fails to give a good control of Type I error rates, under 
skewed heavy tailed distribution. In this study, the AGWMOM test was applied in Alexander-Govern test as its 
central tendency measure. To evaluate the capacity of the test, a real life data was used. Descriptive statistics, 
Tests of Normality and boxplots were used to determine the normality and non-normality of the independent 
groups. The results show that only the group middle is not normally distributed due extreme value in the data 
distribution. The results from the test statistic show that the AGWMOM test has a smaller p-value of 
0.0000002869 that is less than 0.05, compared to the AG test that produced a p-value of 0.06982, that is greater 
than 0.05. Therefore, the AGWMOM test is considered to be significant, compared to the AG test.  

Keywords: Alexander-Govern test, MOM estimator, AGWMOM test, descriptive statistics, tests of normality, 
boxplots and test statistic 

1. Introduction   

In comparing independent group means, the analysis of variance is applicable in different aspects of life, such as 
in sociology, agriculture, economics and in medicine, as explained by Pardo, Pardo, Vincente and Esteban (1997). 
The three main assumptions that must be fulfilled before the ANOVA can perform effectively are: (i) 
homogeneity of the variance (ii) normality of the data and (iii) independent observations. 

The ANOVA is a classical group test that is used for comparing three or more means. The ANOVA is very 
sensitive to the assumptions of homogeneity of the variance. In a situation where there is a violation in the 
assumptions, it would affect the authenticity of the test and thereby the p-value may become too conservative or 
large (Brown & Forsythe, 1974; Wilcox, Charlin & Thompson, 1986).    

Welch (1951) proposed the Welch test to solve the problem of heterogeneity of variance. This test modifies the 
calculation of the degree of freedom in the common F test. For unequal variance, the Welch test gives a good 
control of Type I error rates, but fails to control the Type I error rates when the group sizes increases (Wilcox, 
1988). James (1951) introduced the James test. According to Lix et al. (1996), Oshima and Algina (1992) and 
Wilcox (1988) stated that the James test is used for weighting sample means and is a better alternative to the 
ANOVA under variance heterogeneity. But this test fails to give a good control of Type I error rates for a small 
sample size. The Welch test and the James test are used in analyzing a data distribution that is non-normal under 
variance heterogeneity (Brunner, Dette, & Munk, 1997; Kohr & Games, 1974; Krishnamoorthy, Lu, & Matthew, 
2007; Wilcox & Keselma, 2003). 

The Alexander-Govern test was introduced by Alexander-Govern (1994) to handle the problem of variance 
heterogeneity, for a normal data, but this test is not robust to non-normal data. The Alexander-Govern test was 
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compared with the James test and the Welch test and it was admitted by Schneider and Penfield (1997) and 
Myers (1988) that the Alexander-Govern test is a better alternative compared to the James test and the Welch test. 
Myers (1998) admitted that the Alexander-Govern test gives a good solution to the problem of variance 
heterogeneity. Although, the Alexander-Govern test is a better alternative to the ANOVA under variance 
heterogeneity, the test suffers some disadvantages. As stated by Myers (1998) the major weakness of the test is 
that it cannot handle any deviation from normality. The test performs excellently well in the control of Type I 
error for a normal data.  

It is an established fact that the common mean is a very good estimator for a normal data, but it is extremely 
sensitive to the appearance of outliers. The Alexander-Govern test uses mean as its central tendency measure. 
But the test fails to give a high power and good control of Type I error rates, for a non-normal data. A 
non-normal data is a situation whereby a given data set is not normally distributed. Investigation under the 
empirical test shows that the Alexander-Govern test performed remarkably well in the control of Type I error 
rates and power under variance heterogeneity, compared to the ANOVA for a normal data (Alexander & Govern, 
1994). In addition, Schneider and Penfield (1997) observed that the Alexander-Govern test is a better alternative 
to the ANOVA under variance heterogeneity compared to the James test and the Welch test. It is due to the fact 
the Alexander-Govern test is simple in its calculation, and possesses good control of Type I error rates and high 
power for a normal data distribution. But this test fails to give a good control of Type I error rates under 
non-normal data.  

According to Myers (1998) the Alexander-Govern test is only recommended for a normal data and not for a 
non-normal data in the control of Type I error rates. In dealing with non-normal data, transformation becomes a 
better solution. Transformation is a technique that is used in transforming a data distribution that is non-normal, 
under variance heterogeneity. As a result, the present scores in the data distribution become normal with equal 
variance. Despite the fact that transformation possesses the ability of transforming a skewed data, but it 
possesses some disadvantages in its usage. According to Wilcox (2002) in applying transformation on the square 
root of the mean and also the log of the mean, removes the influences on a real data set. Transformation cannot 
eliminate the influence of outliers in a data set. In a condition, where the extent of transformation is complex in a 
given data set, it fails to normalize a skewed data. A better alternative in handling non-normal data is by using 
non-parametric approach. 

Marascuilo and McSweeney (1977) explained that non-parametric test makes no definite assumption in 
association with one or more of the population parameters that describes the given data distribution that is to be 
used. It is used to remove a nominal and a ranked order data and is also referred to as a distribution free test. 
Non-parametric test are not as sensitive as using parametric test, when the assumptions in using the parametric 
test are accomplished. Therefore, larger differences are needed before a rejection of the null hypothesis is carried 
out.  

Also, non-parametric methods require a large sample size to prevent loss of information. In examining the 
weakness in using non-parametric technique, scholars have discovered the use of robust estimator as a better 
alternative in handling non-normal data. Robust estimator that is frequently used in improving the independent 
group test is the use of trimmed mean. The trimmed mean has been successfully used to improve the 
Alexander-Govern test, under variance heterogeneity for a non-normal data distribution (Guo & Luh, 2000; Lix 
& Keselman, 1995; Luh, 1999).       

Lix and Keselman (1998) introduced the trimmed mean as a better alternative to the common mean as its central 
tendency measure under non-normal data. The Trimmed mean is calculated by averaging only the middle data 
value after removing a certain percentage of the largest and smallest data value, while its variance is evaluated 
using the Winsorized variance. Trimming is defined as the process of eliminating extreme values in percentage 
from both tails of the data distribution, in the process of analyzing the data.  

Generally, the percentage of trimming is carried out irrespective of the type of the distribution. It will be a very 
costly mistake, to remove a data distribution where outliers are not found, mainly in a normal distribution, 
because in doing so, it will lead to loss of information. For a skewed data distribution, the trimming process is 
not done equally on the tails of the data distribution. Another weakness in using the trimmed mean is that it could 
not give a good control of Type I error rates, when the number of groups is more than two, especially when it 
was applied in Alexander-Govern test (Lix & Keselman, 1995). 

Another technique in handling the influence of outliers in a data distribution is with the use of Winsorization 
approach. According to Hasings, Monsteler, Tukey and Winsor (1947) describes the winsorization process as an 
exchange or replacement for an outlier detected value with the value closest to the outlier. In Winsorization 
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process, the sample size of the data distribution remains the same. While in the trimming process, the outliers 
detected are removed from both the upper and lower tail of the data distribution. The trimming process results to 
loss of information, while the Winsorization process, helps to preserve the data. 

According to Abdullah, Yahaya and Othman (2007) a better alternative to the use of trimmed mean in the 
Alexander-Govern test, is a highly robust estimator known as the modified one step M-estimator (MOM). It was 
discovered by these researchers that when the distribution of the data is skewed, the MOM estimator, gave a 
good control of Type I error rates and it empirically trims extreme data values only, depending on the nature of 
the distribution, be it normal or skewed data distribution. The MOM estimator gave an excellent control of Type I 
error rates, when it was applied in Alexander-Govern test, under normal or highly skewed data distribution, but 
fails to give a remarkable control of Type I error rates under skewed heavy tailed distribution (Othman et al., 
2004). 

In this study, to evaluate the capacity of the test using real data, for the AG test and the AGWMOM test, 
Descriptive statistics, Test of Normality, Box plots and the Test statistic were employed. The results from the 
Test statistic, shows that the AGWMOM test is very significant compared to the AG test. 

2. Method 

2.1 The Alexander-Govern Test 

The Alexander-Govern test is a test introduced by Alexander-Govern (1994) that uses mean as a measure of its 
central tendency and is also used in comparing two or more groups. This test gives a good control of Type I error 
rates, and provides high power under variance heterogeneity for a normal data but it is not robust to non-normal 
data. The test statistic for the Alexander-Govern test is obtained by using the procedures below: 

Firstly, the mean of the test is calculated using: 

ijj

j

X
X

n






         (1) 

where 

ijX denotes the observed ordered random samples and jn represent the sample sizes of the observations. The 
mean is used as a measure of the central tendency in the Alexander-Govern (1994) method. After the mean is 
obtained, the estimate of the usual unbiased variance is obtained by using: 
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where 

jX is


used for estimating j for the population j. The standard error of the mean is obtained for each of the 
groups, using: 
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The weight ( )jw  for the group sizes with j population of the ordered sample data is defined, where jw
must be equivalent to 1. So, the weight ( )jw for each of the independent groups is obtained using the formula: 
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Note:  The weight ( )jw for the group sizes with j population of the ordered sample data is defined such that, 

1

J
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w

  must be equal to 1 (Alexander & Govern, 1994). 

The null hypothesis testing for the Alexander-Govern (1994) technique, for the equality of the mean, under 
variance heterogeneity is defined as: 
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The alternative hypothesis negates the claim or statement made by the null hypothesis. The variance weighted 
estimate of the total mean for all the groups in the data distribution, is obtained using: 

1

J

jj j
w X

 


         (6) 

where 

jw is the weight for each of the group in the data distribution and jX


is the mean of each of the groups in the 
ordered sample. The t statistic for each of the groups is obtained using: 

j
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where 

jX


represent the mean for each of the independent group, 


represent the grand mean for all the groups under 
analysis and ejS denotes the standard error for each of the independent groups with population .j  

The t statistic is distributed as a t variable, with 1jn  degrees of freedom for .  

where 

 is the degree of freedom for each of the independent groups in the ordered data distribution. The t statistic is 
obtained for each group and is transformed to a standard normal deviates by using the Hill’s (1970) 
normalization approximation in the Alexander-Govern (1994) technique. The AG formula is defined as: 
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and where 
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The test statistic for the Alexander-Govern approach is expressed as: 

2
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The test statistic value of the Alexander-Govern (AG) test at  = 0.05 level of significance is denoted by A. The 
p-value of the test is obtained from the standard chi-square distribution table, with J – 1 degree of freedom. If the 
p-value obtained for the AG test is > 0.05, then we say the AG test is not significant, otherwise, the test is 
regarded as significant (when the p-value of AG test is < 0.05). 

3. The Modified Alexander-Govern Test 

Given an ordered data sample of X1, X2, …, Xn , with sample size n and group sizes j. Firstly, the median of the 
data set is obtained by selecting the middle value from the observations. The MAD estimator is the median of the 
set of absolute values of the differences between each of the score and the median. It is the median of:  /Xj – 
M/,…,/Xn – M/. Thereafter, the median absolute deviation about the median (MADn) estimator is obtained by 
using: 

,
0.6745n

MAD
MAD           (12) 

According to Wilcox and Keselman (2003) the constant value of 0.6745 is used to rescale the MAD estimator, 
with the aim of making the denominator estimates  when sampling from a normal distribution. 

Outliers in a data distribution can be detected by using the formula below: 
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where  

Xj represents the observed ordered random sample, M is the median of the ordered random samples and MADn is 
the median absolute deviation about the median. The value of K is 2.24. This value was proposed by Wilcox and 
Keselman (2003) for detecting the presence of outliers in a data set, because it has a very small standard error, 
when sampling from a normal distribution. 

Equation (13) and (14) is also referred to as the MOM estimator that is used for detecting the presence of outliers 
in a data distribution. The Winsorized MOM estimator would be applied in the data distribution when the outlier 
detected value is replaced or exchanged with a preceding value closest to where the outlier is located.   

The WMOM estimator, which replaces the mean as a measure of the central tendency is calculated by using the 
formula below: 
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where  

WMOMjX


is the mean of the Winsorized data distribution, WMOMjX is the ordered sample data of the Winsorized 
data distribution and n is the sample size of the Winsorized data distribution. The WMOM estimator becomes a 
replacement for the common mean as a measure of the central tendency in the Alexander-Govern test, for the 
following reasons: 

1. To remove the presence of outliers from the data distribution. 

2. To make the Alexander-Govern test to be robust to non-normal data. 

The Winsorized sample variance is expressed as: 
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where 
2
WMOMjS is the Winsorized sample variance for the Winsorized data distribution, jX is the observed random 

sample, WMOMjX


is the Winsorized MOM estimator for the Winsorized data distribution and n is the sample size 
of the ordered data set. 

The standard error of the Winsorized MOM is obtained by using the bootstrapping algorithm, for estimating 
standard errors, which is defined using the following procedure. Firstly, we select B independent bootstrap 
samples which are expressed as: 1 2, ,..., ,Bx x x    where each of the random samples consists of n data sets 
chosen by making replacement from x, which is defined as: 
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The symbol ( ) indicates that x is not the actual data set of x, but it is referring to a randomized or resampled 
version of x. To estimate the standard error of the bootstrap samples, the number of B must be within the interval 
of (25 – 200). As stated by Efron and Tibshira (1998) 50 amounts of the bootstrap sample is a reasonable amount 
to give a sufficient estimate of the standard error of the MOM estimator. In this study, 50 amounts of the 
bootstrap sample were used to give a reasonable estimate of the standard error of the MOM estimator.  

Secondly, we estimated the bootstrap replications equating to each of the bootstrap samples expressed as: 

( ) ( ) 1,2,..., .bb s x b B


          (18) 
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Thirdly, we estimate the standard error of ( )Fse 


from the sample standard deviation of the bootstrap (B) 
replications as defined as: 
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The weight jw for the Winsorized data distribution for each of the independent groups is obtained using: 
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 is the sum of the reciprocal of the square of the standard error for all the independent groups 
in the ordered data set from the real life data distribution. 

The variance weighted estimate of the total mean for the Winsorized data distribution for all the independent 
groups is defined as: 

1

J

j jj WMOMj
w X

 


        (22) 

The t statistic for the Winsorized data distribution for each of the independent groups is expressed as: 
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where 

eWMOMjS is the Winsorized sample standard error from the Winsorized data distribution, for each of the 
independent groups of .WMOMjX



 

In the Alexander-Govern (1994) approach, the jt value is transformed to standard normal by using the Hill’s 
(1970) normalization approximation and the hypothesis testing of the Winsorized data distribution, where 
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Therefore, the normalization approximation formula for the Alexander-Govern approach, using the Winsorized 
data distribution is defined as: 
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The test statistic for the AGWMOM for all the independent groups in the ordered sample data is defined as: 

 

2

1
,

J

jj
AGWMOM Z


        (28) 

The test statistic of the AGWMOM test follows a chi-square distribution at 0.05  level of significance, with J 
– 1 chi-square degrees of freedom. The p-value of the AGWMOM test is obtained from the standard chi-square 
distribution table. If the p-value is < 0.05, it shows that the AGWMOM test is significant, otherwise it is not. 

4. To Evaluate the Capacity of the Test Using Real Data 

 

Table 1. Given an Ordered Data set with Observations as follows 

Young (Y) Middle (M) Old (O) 
482.43 335.59 519.01 
484.36 338.43 528.50 
488.84 353.54 530.23 
495.15 404.27 536.03 
495.24 437.50 538.56 
502.69 469.01 538.83 
504.62 485.85 557.24 
518.29 487.30 558.61 
519.10 493.08 558.95 
524.10 494.31 565.43 
524.12 499.10 586.39 
531.18 886.41 594.69 
548.42 - 629.22 
572.10 - 645.69 
584.68 - 691.84 
609.09 - - 
609.53 - - 
666.63 - - 
676.40 - - 

Source: Keselman et al. (2007). 

 

Table 2. The Winsorized data distribution from the real life data 

Winsorized Young Winsorized Middle Winsorized Old 
482.43 404.27 519.01 
484.36 404.27 528.50 
488.84 404.27 530.23 
495.15 404.27 536.03 
495.24 437.50 538.56 
502.69 469.01 538.83 
504.62 485.85 557.24 
518.29 487.30 558.61 
519.10 493.08 558.95 
524.10 494.31 565.43 
524.12 499.10 586.39 
531.18 499.10 594.69 
548.42 - 629.22 
572.10 - 645.69 
584.68 - 645.69 
609.09 - - 
609.53 - - 
609.53 - - 
609.53 - - 
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Table 3. Descriptive Statistics for the bootstrap sample (n = 50), for the AG test 

Descriptive 
Statistics 

Young (Y) Middle (M) Old (O) 

Usual mean 544.0511 299.1784 451.5379 
Standard Error of 
Mean 

13.7022 59.7782 55.8659 

Skewness  1.100 0.210 -0.409 
Kurtosis  0.248 -0.488 0.258 

 

In Table 3, the values of the skewness for the group young, middle and old are all greater than zero. Hence, the 
distribution of the data is said to be right skewed. The values of the kurtosis for the group young and old is less 
than three and it indicates that the values of the data are majorly distributed around the mean in the distribution. 
While the kurtosis value for the group middle is greater than three and hence, it shows that the distribution of the 
data is centred about the mean, with a thicker tail. As a result, there is high probability for extreme values. 

 

Table 4. Descriptive Statistics for the bootstrap sample (n = 50), for the AGWMOM test 

Descriptive Statistics Winsorized Young Winsorized Middle Winsorized Old 
Usual Mean 505.8433 456.8608 551.0392 

Standard Error of Mean 4.9059 12.1963 6.7518 
Skewness 0.058 -0.411 0.606 
Kurtosis -1.554 -1.937 -0.432 

 

Table 5. Tests of Normality for the real life data 
 Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic Df Sig. Statistic Df Sig. 
Young   .185 18 .200* .924 18 .319 
Middle   .347 11 .000 .721 11 .001 
Old   .199 14 .200* .935 14 .431 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction. 

 

5. Discussion and Conclusion 

Shapiro-Wilk Test is a test that is most suitable for sample sizes that is less than 50. This test is also suitable to 
handle sample sizes that is as large as 2000. As a result of this, the Shapiro-Wilk Test is used to test for the 
normality of the three independent groups, namely, the group young, middle and old respectively. If the 
significant values of any of the three tests is greater than 0.05, then the data is said to be normally distributed. 
Otherwise, if the significant value is less than 0.05, then the data distribution is said to be non-normal. The 
results from Table 5, show that the p-value for the group young and old is greater than 0.05, hence both groups 
are normally distributed. The group middle has a p-value of 0.001 which is less than 0.05 and is considered to be 
non-normally distributed.  

In Figure 1, shows the boxplots of the reaction time against the group young, middle and old respectively. It can 
be observed very clearly from the plots that there is no extreme value seen in the group young and old and hence, 
the data distribution for both groups are said to be normally distributed. There is an extreme value observed in 
the group middle, and this indicates that the data distribution for the group middle is non-normal.   
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Figure 1. Boxplots on reaction time versus group young, middle and old 

 

Table 6. The test statistic for the AG test and AGWMOM test 

Test Test Statistic p-Value 

Original AG 5.3237 0.06982 

AGWMOM 30.1280 0.0000002869

0.05    

 
In Table 6, the test statistic for the AG test has a value of 5.3237, with a p-value of 0.06982 at   0.05 level of 
significant. This implies that the p-value of the AG test is regarded as not significant, since the p-value of the AG 
test is > 0.05. While the test statistic value of the AGWMOM test is six times more than that of the original AG 
test. The test statistic value of the AGWMOM test produced a value of 30.1280, with a p-value of 0.0000002869 
at 0.05 level of significant. As a result, the p-value of the AGWMOM test is regarded as significant, since its 
value is < 0.05, compare to the AG test. The standard error of the Winsorized AGMOM from the real life data for 
the group young, middle and old is far smaller compared to the standard error of the AG test from the original 
real life data.  

Therefore, the AGWMOM test has assisted to minimize error as much as possible from the real life data 
compared to the AG test.  
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