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numbers for flow (velocity) is much smaller (Durst & Ünsal 2006), and the transition length is around 100 times 
of di (from Re≈2300 to Re≈3000) in this case.Before the position of x=0, an additional segment (longer than 
500di) which belongs to the same tube as the heated part shown in figure 1 can be placed. In followings the flow 
at each station from just before the transition to the outlet is assumed to be both hydrodynamically and thermally 
fully developed. 

For the fully developed axisymmetric flow inside the tube, the parameters at each cross section (station) can be 
determined by the mean velocity and temperature and the boundary conditions (the heat flux and zero velocity at 
the tube wall surface). The length of tube is about 1000 times of di. When studying the flow velocity in 
x-direction which is u and fluid temperature T at a cross section, one can neglect the variations of some 
quantities along x-direction. The reason is that their variations along x-direction are small when compared with 
the variations of u and T along r-direction. In following, u and the fluid properties such as μ and k are assumed to 
be not varying with x when finding the solution at each cross section. Only the variations of T and the pressure p 
with x are considered. So at each station ρ and u are functions of r along the radius. The whole flow in the tube 
can be solved by determining the parameters at each station. 

In fact the changes of μ and k are very large from the inlet to outlet. Two reasons can be said about treating them 
as not varying with x when finding the solution at each cross section. Firstly, in the following formulations the 
derivatives of μ and k with x are not used. Secondly, when finding the solution at each cross section, the values 
of local μ and k corresponding to the local T and p are used. In this way the influences of changes of μ and k on 
the solution at each cross section are considered. 

For axisymmetric laminar flow in the tube, u satisfies (Eckert & Drake 1972; Landau & Lifshitz 1987) 

(1)

The temperature increase is mainly due to heat transfer in radial direction. Following the analysis of Eckert and 
Drake (1972), the temperature variations due to viscous friction and axial heat transfer are neglected, so 

(2)

If the method of separation of variables is used, T can be expressed as a product of two parts. Of the two parts, 
one varies with x and the other varies with r. Let 

 
(3)

then Eq. (2) becomes 

 
(4)

The velocity in r-direction is neglected here. According to the mass balance equation, the product of ρ and u is 
same at different cross section if r is equal, Eq. (4) can be divided into two linear equations. The physical 
properties such as μ, k and cp is determined by the local temperature and pressure, so it is not difficult to 
understand that Eqs. (1) and (2) are coupled. For the cases of interest, Eqs. (1) and (2) are only weakly coupled 
through the dependence of physical properties on temperature and pressure. 

Fluid is consisted of vast number of molecules. The molecules collide all the time. These collisions do not 
produce or annihilate energy or momentum of the fluid. So momentum and energy equations do not have source 
terms when conserved variables are used. But the entropy balance equation has source terms because of the 
dissipative processes accompanying the collisions. These processes change the nonequilibrium distribution, tend 
to drive the flowing fluid to approach equilibrium, and produce entropy. The entropy production due to 
temperature and velocity gradients is (Reichl 1998; Landau & Lifshitz 1987; Lifshitz & Pitaevskii 1980) 

(5)

in which, σ is the entropy production, subscript Lam means laminar, v is the velocity vector, and  is the 
symmetric tensor with zero trace of . In cylindrical coordinate  is 

1 2dp d du dp du
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(6)

in which,  is the unit tensor, superscript T means transpose, Tr means the trace of a tensor, vr is the velocity 
along radius, and vx is the velocity along x-direction. In present case, vx=u and vr=0. 

The terms of temperature variation due to viscous friction and the axial heat transfer are omitted in Eq. (2). So 
the second term and axial part in the first term of Eq. (5) can be neglected in order to be consistent with Eq. (2). 
Nevertheless, these terms are retained when the entropy production is discussed in following. One will see this 
retainment does not affect the conclusion. 

In cylindrical coordinate, the first term in Eq. (5) is 

 
(7)

and the second term in Eq. (5) is 

 
(8)

In Eqs. (7) and (8), the subscripts T, X, Θ and V denote partial entropy productions due to the corresponding 
gradients, and V means velocity. One can see that the entropy production includes square terms of temperature 
and velocity gradients. 

The hydrodynamic equations for laminar flow are also called Navier-Stokes equations. In the equations 
considered here the relationships between the generalized currents (e.g. the stress tensor) and the generalized 
forces (e.g. the tensor ) are linear (Reichl 1998). The fluid elements of laminar flow inside the tube are in 
nonequilibrium, and the dissipative transport processes inside them increase the entropy. For nonequilibrium 
system, a state of minimum entropy production is a stationary state in linear regime, and this was first 
established by Prigogine (Reichl 1998). This criterion corresponds to the minimum free energy which is 
applicable for equilibrium systems. 

3. Equations for Fully Developed Turbulent Flow 

For fully developed axisymmetric turbulent flow inside the tube, at each station  and ū are also functions of r, 

and the momentum balance equation can be written as (Eckert & Drake 1972) 

 (9)

in which, overbar above the physical quantities means time averaged values, while tilde means instantaneous 
values minus their time averaged values, which can be called fluctuating values. Since the mean velocity in 
r-direction is 0, the instantaneous velocity in r-direction is . 

For fully developed turbulent flow, the equation of temperature is (Eckert & Drake 1972) 

 (10)

Integrating Eq. (9) once along radial direction yields Eq. (1) for laminar case. So the first terms in the right hand 
sides of Eqs. (9) and (10) are consistent with those laminar dissipative terms in Eqs. (1) and (2). The second 
terms in the right hand sides are called turbulent dissipative terms, which can be expressed by gradients of ū and 

 if some assumptions are used. Using these assumptions and integrating Eq. (9), one has (Eckert & Drake 
1972). 

     

2 1 1
0

3 3 2
1 1 1 2

0 0
2 3 3 3

1 1 1
0

2 3 3

v v + v v

r r x

s T r r

x r r

v v v

r r r
v v

Tr U
r r

v v v

r r r

     
             

       
U

   
2 2

, , ,2 2 2 
                  

Lam T Lam Lam

k k d k d
T T

T dx dr
  

   
2

,

2 s s

Lam V

du

T T dr

        
 

v v

v



 1 1dp d du d
r r u v

dx r dr dr r dr
    
 

 

v

 1 1
p p

T T
c u kr c rT v

x r r r r r
           

 

T



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 9; 2015 

209 
 

 (11)

 (12)

in which, εm=εm(r,Re) is called turbulent dissipative coefficient of momentum, and εH=εH(r,Re) is called turbulent 
dissipative coefficient of energy. The variations of  with x are neglected (the product of  and ū is same 
at different cross section if r is equal), so from Eqs. (11) and (12) one can see that the equations for solving 
velocity and temperature are also weakly coupled through the dependence of physical properties on temperature 
and pressure. 

The method of separation of variables can be used to divide Eq. (12) into two equations, because ū,  and εH  
are all functions of r at a station. When doing so, let the fluctuating part contained in Θ, which means 

 (13)

 (14)

The treatment of separation of variables here is similar to Eqs. (3) and (4). X and dX/dx have identical values if 
the mass flux and heat flux are same for both laminar and turbulent flows. If both fluxes reverse to their opposite 
values, according to Eqs. (1), (2) and (4) for laminar case, the gradients of u, X and Θ change signs. The same 
should be true for turbulent case, and it is required that the reversals of both fluxes do not affect , εm and εH. 
So for turbulent flow, according to Eqs. (11), (12) and (13), the reversals of both fluxes result in that the 
gradients of , X and  change signs. According to Eqs. (9), (10) and (14),  and  will also change 
signs. 

Turbulent flow obeys the same full hydrodynamic equations as laminar flow, so its entropy production should be 
the same as Eq. (5) except that instantaneous values are used. The mean entropy production is 

 (15)

in which, the subscript Turb means turbulent, the subscripts T and V have the same meanings as in Eqs. (7) and 
(8). If the effects of statistical dependence between the numerators and denominators are ignored, in cylindrical 
coordinate the first term in Eq. (15) is 

 (16)

in which, 

 (17)

 (18)

The second term in Eq. (15) is 

 (19)

in which, 

 (20)
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 (21)

In Eqs. (16) through (18), the subscripts X and Θ have the same meanings as in Eqs. (7) and (8). The subscripts u 
and v in Eqs. (19) through (21) denote partial entropy productions produced by the corresponding velocity 
components. 

4. Equations for Natural Transition Flow 

Comparing the equations for solving velocity and temperatures, which are Eqs. (1) and (2) for laminar flow and 
Eqs. (11) and (12) for turbulent flow, one can see that the two flow modes obey the same equations if εm and εH 
are taken as 0 for laminar flow. 

The equations for transition flow have the same forms as Eqs. (9) and (10). If one assumes that the fluctuating 
velocity  in radial direction has the same value as that of the fully turbulent flow, at each point in natural 
transition region the flow can be treated as a composition of fully developed laminar and turbulent flows. Under 
this assumption u and Θ at each point are consisted of two parts, of which one is contributed by laminar flow and 
the other by turbulent flow, respectively. The composite ratios are denoted as 1-η and η for laminar and turbulent 
flows, respectively. The variation of u is 

 (22)

in which, the subscript Tran means transition. 

The momentum equation is 

 (23a)

 (23b)

Equation (23b) is the result of momentum conservation for laminar and turbulent flows. In Eq. (23) the variables 
without bar are values of laminar flow and those with bar are mean values of turbulent flow. 

It should be noted that only one pressure gradient is permitted at one station and at same instant. So η should be 
same at one station, and u and Θ and their derivatives with respect to r are consisted of laminar and turbulent 
parts. Turbulent flow in the tube has a fluctuating velocity in r-direction which is . The validity of Eqs. (9) 
and (23) requires that  exists as if the flow is fully turbulent in transition flow region. So in transition flow 
region, the velocity vector is v=(vr, vθ, vx)=(ṽ, 0, uTran). One can substitute this velocity vector into the full 
momentum equation (9) to derive Eq. (23a) (will be further explained using Eq. (26)). The transition length for 
heat transfer (temperature) is several hundred times of the inner diameter di, and the transition length for flow 
(velocity) is around a hundred times of the inner diameter di. In Eq. (23a) η is treated as not varying with x when 
finding the solution at each cross section. 

For temperature one can write similar equations to Eqs. (22) and (23). Like those in pure laminar or turbulent 
case, the variations of ρu and  with x are neglected (the product of ρ and u is same at different cross section 
if r is equal, and so is true for the product of  and ū), and the equations for velocity and temperature are also 
weakly coupled through the dependence of physical properties on temperature and pressure in transition flow. 
The laminar, transition, or turbulent flow and heat transfer have certain type of profiles of u and Θ, or , , 

 and , and the profiles of physical properties such as μ, k and cp may be affected by them. Since it is the Re 
which affects the type of profiles of variables, the physical properties alone do not change the type of profiles of 
variables or the mode of flow and heat transfer. The weakly coupled equations for velocity and temperature can 
have such a characteristic that the type of profile of velocity and its fluctuation do not affect the type of profile of 
temperature and its fluctuation, and vice versa. According to Eqs. (5) and (15), the square terms of temperature 
and velocity gradients in the expression of entropy production are mutually separate. So a different η can be 
adopted for temperature. For simplicity the same η for temperature is considered below. The variation of Θ is 

 (24)

and the temperature equation is 
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 (25a)

 (25b)

Equation (25b) is the result of same heat flux for laminar and turbulent flows. Here as that in Eq. (23a), η is also 

treated as not varying with x when finding the solution at each cross section. 

The introduction of εm and εH in last and this sections is not indispensable for the derivations of composition of 

flows. For example, the momentum equation for transition flow has the same forms as Eq. (9). Since η is same at 
one station, at each point along a radius, the composite velocities  and  can be found by integrating 

Eq. (22), of which the composite mean velocity in x-direction is  and the composite 

fluctuating velocity in x-direction is . Substituting them into Eq. (9), under the 

assumption of  in transition region having the same value as that of the fully turbulent flow, one has 

 (26a)

 (26b)

in which, the fluctuating velocity in x-direction in laminar flow region is 0, and η is not fluctuating here (its 
fluctuation will be discussed in next section). Since η is same at one station and not fluctuating, one can easily 
find here that Eq. (26a) is identical to Eq.(26b), and they both are equivalent to Eq. (23a). From Eq. (26) one can 
see that the flow in transition region is a composite motion of fully developed laminar and turbulent flows, 
because  is the composite mean velocity in x-direction,  is the composite 
fluctuating velocity in x-direction, and  is the composite fluctuating velocity in r-direction. 
For the temperature equation, Eq. (25a) can also be rewritten in a similar form to Eq. (26). The introduction of εm 
and εH in last and this sections helps to shorten the formulations and explain the weak coupling of velocity and 
temperature equations in turbulent case. 

The assumption of  in transition region having the same value as that of the fully turbulent flow can be 
further explained. It is well known that finite amplitude disturbance is needed to trigger the transition even if Re 
is big enough because the laminar flow in tube is linearly stable. A full process of natural transition can happen 
due to some finite amplitude disturbance and the increase of Re inside the tube which is concerned. For a given 
flow inside the tube, this assumption is equivalent to that  is same no matter the flow is laminar, transitional 
or turbulent, and this  originates from the finite amplitude disturbance existing in laminar flow region. The 
assumption of  being same inside the tube does not violate the mass balance equation, because  
corresponds to a finite amplitude disturbance, and there are two other fluctuating velocities in the other two 
directions. The finite amplitude disturbance determines the magnitudes of the three-dimensional fluctuating 
velocities in the laminar flow region, and the fluctuating velocities except  do not change in regions of 
different flow modes. The influence of the three-dimensional fluctuating velocities can be neglected in the 
laminar flow region, but whether the transition happens or not depends on the amplitude of disturbance. The 
transition starting and ending Reynolds numbers are very much different for the forced transitions with different 
amplitudes of disturbance. 

In transition flow the values of u and Θ for laminar ingredient may be different from those for corresponding 
pure laminar flow. In the case of heated flow in tube, the different flow modes have different profiles of 
temperature at a station, so the physical properties such as cp, μ and k have different profiles. It is not difficult to 
understand that different profiles of cp, μ and k lead to different profiles of u and Θ at a station. In transition flow 
the profiles of u and Θ for laminar ingredient are related to the instant profiles of cp, μ and k corresponding to the 
local instant temperature and pressure. If the differences of the physical properties caused by different flow 
modes are neglected, in transition flow the values of u and Θ for laminar ingredient are the same as those for 
corresponding pure laminar flow. The same is true for the values of ū and  for turbulent ingredient. 
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Obviously, arbitrary η can satisfy Eqs. (23), (25) and (26). So the fluctuating velocity in radial direction having 
the same value as that of fully turbulent flow, makes this composition of flows both mathematically and 
mechanically possible. From Eq. (26), one can see that this composition is still valid even if one considers the 
nonzero fluctuating velocity in x-direction in the laminar flow region. Since it is the composition of two types of 
flow motion for a fluid element which is discussed, it is permitted even for η<0 or η>1. A negative η or 1-η 
means negative contributions of the mass flux, pressure gradient, and heat flux, accordingly resulting in negative 
values of gradients of u, X and Θ, and negative values of  and . 

In this section the transition flow is decomposed into laminar and turbulent ingredients by assuming the 
fluctuating velocity  exists as if the flow is always fully turbulent. The flow is laminar when η=0, while the 
flow is turbulent when η=1. There is one more variable (η) now, so Eqs. (23) and (25) alone cannot determine the 
transition behavior. 

5. Fluctuations of Natural Transition Flow Inside the Tube 
The dynamic equation of η must be found if the aim is to determine how natural transition evolves inside the 
tube. Let ReL denote the transition starting Re and ReR denote the ending Re. It has been found in heat transfer 
experiments that the natural transition starts at ReL≈2300 and ends at ReR≈10000 in circular tube (Bergman, 
Lavine, Incropera & DeWitt 2011; Rohsenow, Hartnett & Cho 1998). The difference of ReL and ReR for flow is 
much smaller according the measurements of the fluctuations of flow velocity (Durst & Ünsal 2006). The 
exactness of when transition starts and ends is case-dependent. Here the interests are how transition evolves 
between its start and end, and how the evolution affects the flow and convective heat transfer characteristics. 

Before giving the expression of entropy production in transition flow region, the fluctuation of η is introduced. In 
natural transition region, η is assumed to be consisted of two parts, which are the mean value  and the 
fluctuating value . So 

 (27)
Substituting Eq. (27) into Eqs. (22) and (24), one has 

 (28)

 (29)

in which,  is between 0 and 1, and is a monotonic ascending function of Re between ReL and ReR. Equations 
(28) and (29) show that both (du)Tran and (dΘ)Tran have two fluctuating components, which are turbulent 
fluctuating quantities and the quantities corresponding to the fluctuation of η, respectively. 

The introduction of and , can give the instantaneous value of composite ratio to describe the state of the 
transition flow at each instant and discern the disordered motions which are neither laminar nor turbulent. It 
was reported by Mullin(2011) and Durst &Ünsal (2006) that during transition there are typical instantaneous 
disordered motions which are different than the generic turbulence (many other papers also reported such 
motions). The commonly used intermittency factor γ cannot discern such instantaneous states of the transition 
flow. One can see that the introduction of  and can better describe the transition flow. 

Unlike ,  and  which are statistically dependent, between the turbulent fluctuating quantities and the 
fluctuation of η, the following relationships of statistical independence are assumed to be valid 

 (30)

in which, n and m are both positive integers, and  denotes ,  or . The validity of Eq. (30) may lie in 

the two different mechanics by which the fluctuations are produced. The productions of ,  or  are 

determined by the flow mode of turbulence, while  is produced by the fluctuating behavior of the flow modes 

in transition region. 

Only one pressure gradient is permitted at one station and at same instant, so  as well as  has only one 

value at one station. One can show that the introduction of  and  does not affect the validity of Eq. (26b). 
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At each point along a radius, the composite velocities  and  can be found by integrating Eq. (28), of 

which the composite mean velocity in x-direction is  and the composite fluctuating 

velocity in x-direction is . The composite fluctuating velocity in r-direction is always 

. Substituting them and  and  into Eq. (9), using Eq. (30), then one has an equation identical to Eq. (26b) 

except that  takes the place of η. So the introduction of  and  does not affect the validity of 

composition of flows described in last section. 

The mean entropy production is the same as Eq. (15) because the flow obeys the same full hydrodynamic 

equations. Substituting Eqs. (28) and (29) into Eq. (15), using Eq. (30), then after some manipulations one has 

 
(31)

in which, the subscript Tran means transition,  is the same as in Eq. (7),  is Eq. (8),  is 

Eq. (17),  is Eq. (18),  is Eq. (20), and  is Eq. (21), if T and Θ2 there in denominators are 

replaced with  and . The effects of statistical dependence between numerators and denominators are 

ignored for the convenience of elucidation. Both  and  are functions of Re, and they do not vary with r. 

The terms excluding  and  (both same for different flow modes) in the right hand side of Eq. (31) 

remind us of the free energy of the binary mixture in equilibrium, for which the treatment is given by Reichl 

(1998) and Cowan (2005). Following the definition of the free energy of mixing for the binary mixture in 

equilibrium by Cowan (2005), the four terms ahead in Eq. (31) are dropped, and the mean entropy production of 

composition for a fluid element in the nonequilibrium natural transition flow inside the tube is defined as 

 (32)

in which, the subscript c means composition. Following the criterion of minimum entropy production first 

established by Prigogine (Reichl 1998), the choice of  should give the minimum value of . This 

requires the derivative of Eq. (32) with respect to  is 0. When Re=ReL, =0 and =0, and when Re=ReR, 

=1 and =0. So the η-term, which is the sum of terms in the first square brackets of the right hand side of Eq. 

(32), is 0 when =0 or =1. The sum of other terms in the parentheses of the right hand side of Eq. (32) 

varies with r, but  should not vary with r. Let the derivative of the η-term with respect to  is 0, which is 

 (33)
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then the η-term is always 0 for 0≤ ≤1. So the derivative of  with respect to  is 0 in transition 

region. 

This choice of  corresponds to the minimum entropy production which is required to maintain the movement 

of a fluid element in transition flow region. is independent of r and is only a function of Re. So Eq. (33) 

describes the evolution of fluctuations and natural laminar-to-turbulent transition flow inside the tube. The 

retainment or discard of terms in the entropy production equation corresponding to terms of viscous friction and 

axial heat transfer which are neglected in the temperature equation does not affect Eq. (33). 
6. One fluctuation function and Comparisons with Experimental Phenomena 

The transition from laminar to turbulent flow was treated as a phase transition of nonequilibrium thermodynamic 
system by Reichl (1998). Order parameters are used to describe phase transitions. If an order parameter is 
adopted to describe the transition flow inside the tube, it should be a linear function of η. 

Fluctuations of the order parameter are discussed by Landau and Lifshitz (1980) when dealing with phase 
transitions of the second kind in thermodynamic equilibrium system. Near the phase transition point, there exists 
a narrow range of temperature where the physical nature of the thermodynamic function consists in an 
anomalous increase in the fluctuations of the order parameter. This range is called the fluctuation range where 
the fluctuations of order parameter play the dominant role. It is stated by Henkel, Hinrichsen & Lübeck (2008) 
that much of what is known about equilibrium phase-transitions can be extended to the non-equilibrium cases. 

The Landau theory of phase transition, which does not consider the fluctuations of order parameter, is 
inapplicable in the fluctuation range (Cowan 2005; Landau & Lifshitz 1980). In this range the thermodynamic 
potential cannot be represented as a function of only the order parameter (and its derivatives with respect to 
coordinates) and other thermodynamic variables. The fluctuation of η has been introduced in Eq. (31). The 
derivation of Eq. (33) is in accordance with the spirit of Landau theory in the treatment regarding the order 
parameter, which is treating the order parameter as an independent variable whose value is determined by 
minimizing the thermodynamic potential (Landau & Lifshitz 1980). 

Equation (33) shows the evolutions of statistics of fluctuations and laminar-to-turbulent transition are not 
dependent on either laminar or time-averaged turbulent profiles. This is in accordance with the critical 
phenomenon of phase transition. Near the critical point microscopic details do not determine the behavior of 
thermodynamic system, and dissimilar systems share many same properties (Cowan 2005). 

For the studied natural transition flow,  is a function of Re. It is assumed here that  includes some powers 
of derivatives of  with respect to Re. If the fluctuation function of η is taken as 

 (34)

will contain the square of the derivative of lowest order and a positive coefficient. So Eq. (33) becomes 

 (35)

The transition starts at ReL and ends at ReR, so the restrictions on  are 

 (36)

The fluctuations of η are both zero in laminar and turbulent flows, and  is a monotonic ascending function of 
Re, so the restrictions on the derivative of  are 

 (37)

The solution which satisfies all these conditions is 
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in Eq. (32) is 0 when Eq. (33) are valid. So Eq. (31) can be rewritten as 

 (41)

Comparing Eq. (41) with Eq. (31), one can see that the evolution of transition takes place in such a way that, the 
negative entropy production due to the composition of two flow modes balances out the positive entropy 
production due to the fluctuation of η. In this way  progresses continuously from 0 to 1, and the entropy 
production in transition flow is formally a weighted superposition of those in laminar and turbulent flows at 
same Re. 

In laminar-to-turbulent transition η is adopted to describe the composite flow. The evolution of transition flow is 
given by Eq. (38) which is derived from Eq. (34). Equation (34) gives the fluctuation of η. Different form of Eq. 
(34) leads to different form of Eq. (38). From the comparisons with the experimental phenomena given above, 
one can conclude that the statistics of fluctuations and the flow and convective heat transfer behaviors of natural 
transition flow inside the tube can be explained using the present derivations, and the fluctuation of η governs the 
evolution of natural transition flow inside the tube. 

Lastly, if a different η is adopted for temperature, the corresponding entropy production can be obtained in a 
similar form to Eq. (31). Because of the weak coupling of the equations for solving velocity and temperature, 
and the separateness of the square terms of temperature and velocity gradients in the expression of entropy 
production, this adoption does not change much the discussions above. 

7. Conclusions 

The statistics of fluctuations and the flow and convective heat transfer behaviors of natural transition flow inside 
an electrically heated circular tube can be explained using composition of motions, the fluctuations of composite 
ratios, and the minimum entropy production criterion. 

(1)The natural transition flow in the tube can be decomposed into fully developed laminar and turbulent 
ingredients. The composite flow in transition region are defined by the composite ratios which are the 
proportions of the two flow modes. 

(2)The composite ratios fluctuate in transition flow, and the fluctuations of the composite ratios govern the 
natural transition behavior. 

(3)The process of laminar-to-turbulent transition inside the tube, can be compared with phase transitions of the 
second kind in thermodynamic equilibrium system. The conceptions for the description of the latter, such as 
order parameter and the fluctuation range, can be adopted in the study of the laminar-to-turbulent transition. 
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