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Abstract

The natural transition flow and convective heat transfer inside an electrically heated circular tube are analyzed.
The transition flow is treated as a composition of fully developed laminar and turbulent flows by assuming the
fluctuating velocity in radial direction exists as if the flow is fully turbulent. The composite ratios are used to
define the composite flow, and they fluctuate in transition flow. The criterion of minimum entropy production is
used to derive an equation which can describe how transition evolves. It is pointed out that the fluctuations of the
composite ratios govern the transition behavior. One fluctuation function is given to attain agreements with
measurements including those obtained in heat transfer and flow experiments.
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1. Introduction

The laminar-to-turbulent transitions of both the incompressible and compressible fluids are of practical
importance for many applications. For the axisymmetric low speed flows in pipes, careful measurements have
been repeatedly conducted for over one century, and some have been briefly reviewed by T. Mullin (2011).

The flow and heat transfer of hydrocarbons inside electrically heated circular tubes have attracted interests for
the cooling designs of scramjets over years (Linne, Meyer, Edwards & Eitman 1997; Huang, Sobel & Spadaccini
2002). The heat will be generated in tube wall by the electric current and resistance of the tube as shown in
figure 1. The convective heat transfer with nearly constant heat flux will take place when n-decane flows inside
such a tube. As n-decane flows, the absorbed heat will drive it to higher temperatures 7, lower densities p, and
lower viscosities u. If the mass flux, tube inner diameter d;, and electric current inside the tube wall have
appropriate constant values, steady flow will be established, and the Reynolds number (Re=pUd//i, here p, U and
4 are mean values at a cross section) can increase from 886 at inlet to 15,000 at outlet. These can be seen in
figure 2.
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Figure 1. Flow inside an electrically heated tube

The heat flux of the tube can be controlled by selecting the electric current, which may drive the fluid
temperature to increase from room temperature to as high as 800K. The thermophysical properties, such as
density p, viscosity x, and thermal conductivity &, decrease over a certain range from the inlet to outlet. In figure
2, p, i and k of n-decane at different temperature and pressure are calculated using a program for thermophysical
properties of high temperature hydrocarbon mixtures.

It is well known that the natural transition will begin if Re=~2300 (Eckert & Drake 1972), so there can be a full
process of transition from laminar to turbulent flow inside the tube. The laminar flow in tube is linearly stable
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and finite amplitude disturbance is needed to trigger the transition even if Re is big enough. When the transition
starts and ends in tube are case-dependent problems and depend on the disturbance in tube, and the transition
starting Re is very much different for the forced transition. No recognized theory has been established to interpret
the process of laminar-to-turbulent transition since Reynolds' original experiments in 1883 (Mullin 2011; Durst
& Unsal 2006). The nature of transition of the pipe flow is still a puzzle in fluid dynamics. The same is true for
the interpretation of convective heat transfer during the process.

Some laminar-to-turbulent transition was treated as a phase transition of nonequilibrium thermodynamic system
(Reichl 1998). Order parameters are usually used to describe phase transitions (e.g. normal conductor to
superconductor), and they fluctuate near the phase transition point. Large fluctuations have been met in the
process of laminar-to-turbulent transition in pipe-flows (Durst & Unsal 2006; McComb 1992), but very few has
been discussed adopting the point view of nonequilibrium phase transition.
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Figure 2. Density, viscosity, thermal conductivity and Re inside the tube

In axisymmetric transition flow, the random fluctuations of velocity have certain statistic characteristics (Durst &
Unsal 2006). The problem how the statistics of fluctuations evolve as Re increases in transition flow is very
important, even if the starting Re and ending Re of transition flow in tube are known. This paper attempts to
answer how the statistics of fluctuations evolve between the start and end of transition flow in the tube, and how
the statistics of fluctuations affect the flow and convective heat transfer. The method includes three steps. In the
first step, the equations for solving the laminar and turbulent flows in tube are given, then the transition flow is
treated as a composition of laminar and turbulent flows by assuming the fluctuating velocity in radial direction
has the same value as that of the fully turbulent flow. The composite ratios are used to define the composite flow.
In the second step, the fluctuations of the composite ratios in transition flow are introduced, and then the
minimum entropy production method is used to derive an equation which describes how the statistics of
fluctuations of the composite ratios and transition evolve. In the last step, after some analogies are made between
laminar-to-turbulent transition and phase transition, one fluctuation function is given and some comparisons with
experimental phenomena are made.

2. Equations for Fully Developed Laminar Flow

One can see in figure 2 that the decrease of density p and thermal conductivity & in tube is about half of their
original values. At outlet the viscosity u decreases to about 6 percent of its original value, accordingly Re
increases to about 17 times of its original value, since the mass flow rate and the tube inner diameter d; are
constant.

Under the flow conditions of figure 2, Re increases continuously from 886 at inlet to 15,000 at outlet. The
natural transition starts at the position of x=0.26m where Re~2300, which is about 180 times of d; (1.42 mm). For
heat transfer (temperature), the transition ends at the position of x~1.05m where Re~10,000 (Bergman, Lavine,
Incropera & DeWitt 2011; Rohsenow, Hartnett & Cho 1998), which is about 740 times of d;. According the
measurements of the fluctuations of flow velocity, the difference of transition starting and ending Reynolds
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numbers for flow (velocity) is much smaller (Durst & Unsal 2006), and the transition length is around 100 times
of d; (from Re=2300 to Re=~3000) in this case.Before the position of x=0, an additional segment (longer than
500d;) which belongs to the same tube as the heated part shown in figure 1 can be placed. In followings the flow
at each station from just before the transition to the outlet is assumed to be both hydrodynamically and thermally
fully developed.

For the fully developed axisymmetric flow inside the tube, the parameters at each cross section (station) can be
determined by the mean velocity and temperature and the boundary conditions (the heat flux and zero velocity at
the tube wall surface). The length of tube is about 1000 times of &, When studying the flow velocity in
x-direction which is u and fluid temperature 7' at a cross section, one can neglect the variations of some
quantities along x-direction. The reason is that their variations along x-direction are small when compared with
the variations of # and T along r-direction. In following, u# and the fluid properties such as x and k are assumed to
be not varying with x when finding the solution at each cross section. Only the variations of 7" and the pressure p
with x are considered. So at each station p and u are functions of » along the radius. The whole flow in the tube
can be solved by determining the parameters at each station.

In fact the changes of 4 and k are very large from the inlet to outlet. Two reasons can be said about treating them
as not varying with x when finding the solution at each cross section. Firstly, in the following formulations the
derivatives of u and k with x are not used. Secondly, when finding the solution at each cross section, the values
of local u and & corresponding to the local 7 and p are used. In this way the influences of changes of 1 and & on
the solution at each cross section are considered.
For axisymmetric laminar flow in the tube, u satisfies (Eckert & Drake 1972; Landau & Lifshitz 1987)
dp 1d du dp 2 du
= r—|=>—==u— 1
dx rdr(ﬂ drj dx r'udr M

The temperature increase is mainly due to heat transfer in radial direction. Following the analysis of Eckert and
Drake (1972), the temperature variations due to viscous friction and axial heat transfer are neglected, so

or 10 oT
peu—=——|k 2)

= r_
ox ror or
If the method of separation of variables is used, 7 can be expressed as a product of two parts. Of the two parts,
one varies with x and the other varies with r. Let

T =X(x)0(r) 3)

then Eq. (2) becomes
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The velocity in r-direction is neglected here. According to the mass balance equation, the product of p and u is
same at different cross section if 7 is equal, Eq. (4) can be divided into two linear equations. The physical
properties such as x4, k and ¢, is determined by the local temperature and pressure, so it is not difficult to
understand that Egs. (1) and (2) are coupled. For the cases of interest, Egs. (1) and (2) are only weakly coupled
through the dependence of physical properties on temperature and pressure.

Fluid is consisted of vast number of molecules. The molecules collide all the time. These collisions do not
produce or annihilate energy or momentum of the fluid. So momentum and energy equations do not have source
terms when conserved variables are used. But the entropy balance equation has source terms because of the
dissipative processes accompanying the collisions. These processes change the nonequilibrium distribution, tend
to drive the flowing fluid to approach equilibrium, and produce entropy. The entropy production due to
temperature and velocity gradients is (Reichl 1998; Landau & Lifshitz 1987; Lifshitz & Pitaevskii 1980)

k

2 oy
% :F(VT)-(VT)+Tﬂ(Vv) (V) 5)

Lam

in which, o is the entropy production, subscript Lam means laminar, v is the velocity vector, and (Vv)" is the
symmetric tensor with zero trace of Vv . In cylindrical coordinate (Vv)' is
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in which, U is the unit tensor, superscript 7 means transpose, 7 means the trace of a tensor, v, is the velocity
along radius, and v, is the velocity along x-direction. In present case, v,=u and v,=0.

The terms of temperature variation due to viscous friction and the axial heat transfer are omitted in Eq. (2). So
the second term and axial part in the first term of Eq. (5) can be neglected in order to be consistent with Eq. (2).
Nevertheless, these terms are retained when the entropy production is discussed in following. One will see this
retainment does not affect the conclusion.

In cylindrical coordinate, the first term in Eq. (5) is

k k (dXY  k (dOY
O-Lam,T = F(VT) : (VT) = GLam,X + GLam,@ = F[Ej +§(EJ (7)
and the second term in Eq. (5) is
2u s s ufdu ’
= (Vy) :(Vy) == — 8
s =29 () =2 &) ®

In Egs. (7) and (8), the subscripts 7, X, ® and V denote partial entropy productions due to the corresponding
gradients, and /" means velocity. One can see that the entropy production includes square terms of temperature
and velocity gradients.

The hydrodynamic equations for laminar flow are also called Navier-Stokes equations. In the equations
considered here the relationships between the generalized currents (e.g. the stress tensor) and the generalized
forces (e.g. the tensor Vv) are linear (Reichl 1998). The fluid elements of laminar flow inside the tube are in
nonequilibrium, and the dissipative transport processes inside them increase the entropy. For nonequilibrium
system, a state of minimum entropy production is a stationary state in linear regime, and this was first
established by Prigogine (Reichl 1998). This criterion corresponds to the minimum free energy which is
applicable for equilibrium systems.

3. Equations for Fully Developed Turbulent Flow

For fully developed axisymmetric turbulent flow inside the tube, at each station p and i are also functions of 7,

and the momentum balance equation can be written as (Eckert & Drake 1972)

dx rdr dr
in which, overbar above the physical quantities means time averaged values, while filde means instantaneous

values minus their time averaged values, which can be called fluctuating values. Since the mean velocity in
r-direction is 0, the instantaneous velocity in r-direction is v .

For fully developed turbulent flow, the equation of temperature is (Eckert & Drake 1972)

_ _oT 190 T 10 (_ ==
pcu ———[k j———(pcprTv) (10)

" ox  ror FE ror

Integrating Eq. (9) once along radial direction yields Eq. (1) for laminar case. So the first terms in the right hand
sides of Egs. (9) and (10) are consistent with those laminar dissipative terms in Egs. (1) and (2). The second
terms in the right hand sides are called turbulent dissipative terms, which can be expressed by gradients of & and

T if some assumptions are used. Using these assumptions and integrating Eq. (9), one has (Eckert & Drake
1972).
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in which, ¢,=¢,(r,Re) is called turbulent dissipative coefficient of momentum, and ¢;=¢y(r,Re) is called turbulent
dissipative coefficient of energy. The variations of pu with x are neglected (the product of 5 and i is same
at different cross section if » is equal), so from Eqgs. (11) and (12) one can see that the equations for solving
velocity and temperature are also weakly coupled through the dependence of physical properties on temperature
and pressure.

The method of separation of variables can be used to divide Eq. (12) into two equations, because #, p and &y
are all functions of » at a station. When doing so, let the fluctuating part contained in ®, which means

T, =X(x)0,, (r)=X(x)[®(r)+6(r) (13)

T=X(x)6(r) (14)

The treatment of separation of variables here is similar to Egs. (3) and (4). X and dX/dx have identical values if
the mass flux and heat flux are same for both laminar and turbulent flows. If both fluxes reverse to their opposite
values, according to Egs. (1), (2) and (4) for laminar case, the gradients of u, X and ® change signs. The same
should be true for turbulent case, and it is required that the reversals of both fluxes do not affect v, ¢, and &p.
So for turbulent flow, according to Egs. (11), (12) and (13), the reversals of both fluxes result in that the
gradients of # , X and @ change signs. According to Egs. (9), (10) and (14), # and ® will also change
signs.

Turbulent flow obeys the same full hydrodynamic equations as laminar flow, so its entropy production should be
the same as Eq. (5) except that instantaneous values are used. The mean entropy production is

k 2 s s
O-Turb = O-Turb,T + O-Turb,V = F(VT) ’ (VT) +?'U(Vv) : (Vv) (15)

in which, the subscript 7urb means turbulent, the subscripts 7 and 7 have the same meanings as in Egs. (7) and
(8). If the effects of statistical dependence between the numerators and denominators are ignored, in cylindrical
coordinate the first term in Eq. (15) is

-k _
O-Turb,T = F(VT) : (VT) = O-Turb,X + O-Tur/:,G) (16)
in which,
k (dXY
Ot x = F(Ej (17)
k(d®Y k(a®Y
Cruno = o (Ej + e~ [gj (18)
The second term in Eq. (15) is
2/,! s
o-Turb,V = T(Vv) : (VV) = Turb u + O-Turb,v (19)
in which,
2 2
O-Turb u = 4 ﬂj + @j (20)
o Ti\dr dr

209



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 9; 2015

S _4n (d_j(_jd__ -
ety =3 T dr r drr (
In Egs. (16) through (18), the subscripts X and ® have the same meanings as in Egs. (7) and (8). The subscripts u

and v in Egs. (19) through (21) denote partial entropy productions produced by the corresponding velocity
components.

4. Equations for Natural Transition Flow

Comparing the equations for solving velocity and temperatures, which are Egs. (1) and (2) for laminar flow and
Egs. (11) and (12) for turbulent flow, one can see that the two flow modes obey the same equations if ¢,, and gy
are taken as 0 for laminar flow.

The equations for transition flow have the same forms as Eqgs. (9) and (10). If one assumes that the fluctuating
velocity V in radial direction has the same value as that of the fully turbulent flow, at each point in natural
transition region the flow can be treated as a composition of fully developed laminar and turbulent flows. Under
this assumption # and @ at each point are consisted of two parts, of which one is contributed by laminar flow and
the other by turbulent flow, respectively. The composite ratios are denoted as 1-# and # for laminar and turbulent
flows, respectively. The variation of u is

(du),,,, = (1=n)(du),, +n(du),,,, =(1=n)du+nd (@ +i) 22)

in which, the subscript 7ran means transition.

The momentum equation is

dp dp 2 du 2 _ \du
T A Ay B e e au 23
( n)dx+77dx ( n)r#dr+f7r(ﬂ+p8m)dr (23a)
dp 2 du dp 2 _ \du
s~ ~ =0 23b
dx r'udr dx r('u+p8m)dr (230)

Equation (23b) is the result of momentum conservation for laminar and turbulent flows. In Eq. (23) the variables
without bar are values of laminar flow and those with bar are mean values of turbulent flow.

It should be noted that only one pressure gradient is permitted at one station and at same instant. So # should be
same at one station, and « and ® and their derivatives with respect to » are consisted of laminar and turbulent
parts. Turbulent flow in the tube has a fluctuating velocity in 7-direction which is v . The validity of Egs. (9)
and (23) requires that V exists as if the flow is fully turbulent in transition flow region. So in transition flow
region, the velocity vector is v=(v,, v, v)=(V, 0, up,,). One can substitute this velocity vector into the full
momentum equation (9) to derive Eq. (23a) (will be further explained using Eq. (26)). The transition length for
heat transfer (temperature) is several hundred times of the inner diameter d;, and the transition length for flow
(velocity) is around a hundred times of the inner diameter d;. In Eq. (23a) # is treated as not varying with x when
finding the solution at each cross section.

For temperature one can write similar equations to Egs. (22) and (23). Like those in pure laminar or turbulent
case, the variations of pu and pu with x are neglected (the product of p and u is same at different cross section
if v is equal, and so is true for the product of p and i), and the equations for velocity and temperature are also
weakly coupled through the dependence of physical properties on temperature and pressure in transition flow.
The laminar, transition, or turbulent flow and heat transfer have certain type of profiles of u and ®, or U , @,
# and @, and the profiles of physical properties such as 4, k and ¢, may be affected by them. Since it is the Re
which affects the type of profiles of variables, the physical properties alone do not change the type of profiles of
variables or the mode of flow and heat transfer. The weakly coupled equations for velocity and temperature can
have such a characteristic that the type of profile of velocity and its fluctuation do not affect the type of profile of
temperature and its fluctuation, and vice versa. According to Egs. (5) and (15), the square terms of temperature
and velocity gradients in the expression of entropy production are mutually separate. So a different # can be
adopted for temperature. For simplicity the same # for temperature is considered below. The variation of @ is

(d©),,, =(1-7)(d®),, +1(d®), =(1-1)d0+nd(©+6) (24)
and the temperature equation is
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Equation (25b) is the result of same heat flux for laminar and turbulent flows. Here as that in Eq. (23a), # is also
treated as not varying with x when finding the solution at each cross section.

The introduction of ¢,, and ¢ in last and this sections is not indispensable for the derivations of composition of

flows. For example, the momentum equation for transition flow has the same forms as Eq. (9). Since # is same at
and g, = can be found by integrating

one station, at each point along a radius, the composite velocities T

Eq. (22), of which the composite mean velocity in x-direction is T :(l—n)u+7yﬁ and the composite

fluctuating velocity in x-direction is . :(1_77)0+m7:m7. Substituting them into Eq. (9), under the

assumption of V in transition region having the same value as that of the fully turbulent flow, one has

dp @ 1d du || 1d —
(1= )dx dx rdr{ [(1 )dr+ dr}} rdr{ p[ O+W][ VHWJ} (262)
do (L[ di), 1 dn) 1d
(=n) dx e dx =(1=7) rdr (,ur dr)Jr 7 rdr (,ur drj 7 rdr {rpuv} (26b)

in which, the fluctuating velocity in x-direction in laminar flow region is 0, and # is not fluctuating here (its
fluctuation will be discussed in next section). Since # is same at one station and not fluctuating, one can easily
find here that Eq. (26a) is identical to Eq.(26b), and they both are equivalent to Eq. (23a). From Eq. (26) one can
see that the flow in transition region is a composite motion of fully developed laminar and turbulent flows,
because (1—77)u+775 is the composite mean velocity in x-direction, (1_77)0+77[¢ =ni is the composite
fluctuating velocity in x-direction, and (1 — 77) v+nv=7v is the composite fluctuating velocity in r-direction.
For the temperature equation, Eq. (25a) can also be rewritten in a similar form to Eq. (26). The introduction of ¢,
and &y in last and this sections helps to shorten the formulations and explain the weak coupling of velocity and
temperature equations in turbulent case.

The assumption of V in transition region having the same value as that of the fully turbulent flow can be
further explained. It is well known that finite amplitude disturbance is needed to trigger the transition even if Re
is big enough because the laminar flow in tube is linearly stable. A full process of natural transition can happen
due to some finite amplitude disturbance and the increase of Re inside the tube which is concerned. For a given
flow inside the tube, this assumption is equivalent to that V is same no matter the flow is laminar, transitional
or turbulent, and this v originates from the finite amplitude disturbance existing in laminar flow region. The
assumption of Vv being same inside the tube does not violate the mass balance equation, because V
corresponds to a finite amplitude disturbance, and there are two other fluctuating velocities in the other two
directions. The finite amplitude disturbance determines the magnitudes of the three-dimensional fluctuating
velocities in the laminar flow region, and the fluctuating velocities except # do not change in regions of
different flow modes. The influence of the three-dimensional fluctuating velocities can be neglected in the
laminar flow region, but whether the transition happens or not depends on the amplitude of disturbance. The
transition starting and ending Reynolds numbers are very much different for the forced transitions with different
amplitudes of disturbance.

In transition flow the values of u and ® for laminar ingredient may be different from those for corresponding
pure laminar flow. In the case of heated flow in tube, the different flow modes have different profiles of
temperature at a station, so the physical properties such as c,, u and & have different profiles. It is not difficult to
understand that different profiles of c,, u and k lead to different profiles of  and ® at a station. In transition flow
the profiles of # and ® for laminar ingredient are related to the instant profiles of c,, u and k corresponding to the
local instant temperature and pressure. If the differences of the physical properties caused by different flow
modes are neglected, in transition flow the values of u and ® for laminar ingredient are the same as those for
corresponding pure laminar flow. The same is true for the values of i and @ for turbulent ingredient.
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Obviously, arbitrary # can satisfy Egs. (23), (25) and (26). So the fluctuating velocity in radial direction having
the same value as that of fully turbulent flow, makes this composition of flows both mathematically and
mechanically possible. From Eq. (26), one can see that this composition is still valid even if one considers the
nonzero fluctuating velocity in x-direction in the laminar flow region. Since it is the composition of two types of
flow motion for a fluid element which is discussed, it is permitted even for #<0 or #>1. A negative 7 or 1-n
means negative contributions of the mass flux, pressure gradient, and heat flux, accordingly resulting in negative
values of gradients of u, X and @, and negative values of # and ©.

In this section the transition flow is decomposed into laminar and turbulent ingredients by assuming the
fluctuating velocity Vv exists as if the flow is always fully turbulent. The flow is laminar when #=0, while the
flow is turbulent when #=1. There is one more variable (1) now, so Egs. (23) and (25) alone cannot determine the
transition behavior.

5. Fluctuations of Natural Transition Flow Inside the Tube

The dynamic equation of # must be found if the aim is to determine how natural transition evolves inside the
tube. Let Re; denote the transition starting Re and Rer denote the ending Re. It has been found in heat transfer
experiments that the natural transition starts at Re;~2300 and ends at Rep~10000 in circular tube (Bergman,
Lavine, Incropera & DeWitt 2011; Rohsenow, Hartnett & Cho 1998). The difference of Re; and Rej for flow is
much smaller according the measurements of the fluctuations of flow velocity (Durst & Unsal 2006). The
exactness of when transition starts and ends is case-dependent. Here the interests are how transition evolves
between its start and end, and how the evolution affects the flow and convective heat transfer characteristics.

Before giving the expression of entropy production in transition flow region, the fluctuation of 7 is introduced. In
natural transition region, # is assumed to be consisted of two parts, which are the mean value 77 and the
fluctuating value 7. So

n=mn+1 27

Substituting Eq. (27) into Egs. (22) and (24), one has
(du), ~=(1-7)du+7di+iqdi+nd (@ —u+i) (28)
(d0),,, =(1-7)d0+7d®+7dO+7jd (6-©+6) (29)

in which, 77 is between 0 and 1, and is a monotonic ascending function of Re between Re; and Rer. Equations
(28) and (29) show that both (du)p., and (d®)r,, have two fluctuating components, which are turbulent
fluctuating quantities and the quantities corresponding to the fluctuation of #, respectively.

The introduction of 77 and 77, can give the instantaneous value of composite ratio to describe the state of the
transition flow at each instant and discern the disordered motions which are neither laminar nor turbulent. It
was reported by Mullin(2011) and Durst &Unsal (2006) that during transition there are typical instantaneous
disordered motions which are different than the generic turbulence (many other papers also reported such
motions). The commonly used intermittency factor y cannot discern such instantaneous states of the transition
flow. One can see that the introduction of 77 and can better describe the transition flow.

Unlike %, v and ® which are statistically dependent, between the turbulent fluctuating quantities and the
fluctuation of #, the following relationships of statistical independence are assumed to be valid

() (9 =) () @(n_){‘;—‘é] 30)

in which, 7 and m are both positive integers, and § denotes #, V or @ . The validity of Eq. (30) may lie in

the two different mechanics by which the fluctuations are produced. The productions of #, V or @ are
determined by the flow mode of turbulence, while 77 is produced by the fluctuating behavior of the flow modes

in transition region.
Only one pressure gradient is permitted at one station and at same instant, so 77 as well as 77 has only one

value at one station. One can show that the introduction of 77 and 77 does not affect the validity of Eq. (26b).
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At each point along a radius, the composite velocities i, ~and g, ~ can be found by integrating Eq. (28), of

which the composite mean velocity in x-direction is Wy, = (1 — ﬁ)u +7u and the composite fluctuating
velocity in x-direction is 1, =nu+17 (17 —u+ ﬂ) . The composite fluctuating velocity in r-direction is always

Vv . Substituting them and 77 and 7 into Eq. (9), using Eq. (30), then one has an equation identical to Eq. (26b)

except that 77 takes the place of 7. So the introduction of 77 and 77 does not affect the validity of
composition of flows described in last section.
The mean entropy production is the same as Eq. (15) because the flow obeys the same full hydrodynamic

equations. Substituting Egs. (28) and (29) into Eq. (15), using Eq. (30), then after some manipulations one has

O-Tran = aTurb,X + O-Turb,v + (1 - 77 ) (aLam,G + O-Lam,V) + 77 (GTurb,G) + O—Tm‘b,u )

Fo(my || (48 _dOY [(dOY | u |(di_duY (diY G
+[77 (1 77)’7} ®? [dr erJ{er +T {(dr dr} +(drj]

Tran Tran

in which, the subscript 7ran means transition, o, o is the same as in Eq. (7), o,,,, s Eq. 8), &, 18

Eq. (17), ope 18 Eq.(18), oy, isEq.(20),and o~ is Eq.(21),if Tand ©” there in denominators are

replaced with 7, ~ and G)ZT‘ . The effects of statistical dependence between numerators and denominators are

ignored for the convenience of elucidation. Both 7 and 7* are functions of Re, and they do not vary with .

The terms excluding O rumx and Ot (both same for different flow modes) in the right hand side of Eq. (31)

remind us of the free energy of the binary mixture in equilibrium, for which the treatment is given by Reichl
(1998) and Cowan (2005). Following the definition of the free energy of mixing for the binary mixture in
equilibrium by Cowan (2005), the four terms ahead in Eq. (31) are dropped, and the mean entropy production of

composition for a fluid element in the nonequilibrium natural transition flow inside the tube is defined as

] k [(d® d©Y (ddY | u |(di du) (daY
hel\a o) o) rolea) & @)
® r r r Tran r r r

Tran

CTTrzm,c = [? - (1 -

=l

in which, the subscript ¢ means composition. Following the criterion of minimum entropy production first

established by Prigogine (Reichl 1998), the choice of 77 should give the minimum value of oy, .. This

requires the derivative of Eq. (32) with respect to 77 is 0. When Re=Re;, 77 =0 and 77=0, and when Re=Reg,
77=1and 77=0. So the #-term, which is the sum of terms in the first square brackets of the right hand side of Eq.
(32), is 0 when 77 =0 or 77 =1. The sum of other terms in the parentheses of the right hand side of Eq. (32)
varies with , but 77 should not vary with r. Let the derivative of the #-term with respect to 77 is 0, which is

(7)

A 14+277=0 (33
dm
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then the 7-term is always 0 for 0<7; <I. So the derivative of 0, . with respect to 77 is O in transition

region.

This choice of 77 corresponds to the minimum entropy production which is required to maintain the movement
of a fluid element in transition flow region. 77 is independent of r and is only a function of Re. So Eq. (33)
describes the evolution of fluctuations and natural laminar-to-turbulent transition flow inside the tube. The
retainment or discard of terms in the entropy production equation corresponding to terms of viscous friction and

axial heat transfer which are neglected in the temperature equation does not affect Eq. (33).
6. One fluctuation function and Comparisons with Experimental Phenomena

The transition from laminar to turbulent flow was treated as a phase transition of nonequilibrium thermodynamic
system by Reichl (1998). Order parameters are used to describe phase transitions. If an order parameter is
adopted to describe the transition flow inside the tube, it should be a linear function of 7.

Fluctuations of the order parameter are discussed by Landau and Lifshitz (1980) when dealing with phase
transitions of the second kind in thermodynamic equilibrium system. Near the phase transition point, there exists
a narrow range of temperature where the physical nature of the thermodynamic function consists in an
anomalous increase in the fluctuations of the order parameter. This range is called the fluctuation range where
the fluctuations of order parameter play the dominant role. It is stated by Henkel, Hinrichsen & Liibeck (2008)
that much of what is known about equilibrium phase-transitions can be extended to the non-equilibrium cases.

The Landau theory of phase transition, which does not consider the fluctuations of order parameter, is
inapplicable in the fluctuation range (Cowan 2005; Landau & Lifshitz 1980). In this range the thermodynamic
potential cannot be represented as a function of only the order parameter (and its derivatives with respect to
coordinates) and other thermodynamic variables. The fluctuation of # has been introduced in Eq. (31). The
derivation of Eq. (33) is in accordance with the spirit of Landau theory in the treatment regarding the order
parameter, which is treating the order parameter as an independent variable whose value is determined by
minimizing the thermodynamic potential (Landau & Lifshitz 1980).

Equation (33) shows the evolutions of statistics of fluctuations and laminar-to-turbulent transition are not
dependent on either laminar or time-averaged turbulent profiles. This is in accordance with the critical
phenomenon of phase transition. Near the critical point microscopic details do not determine the behavior of
thermodynamic system, and dissimilar systems share many same properties (Cowan 2005).

For the studied natural transition flow, 7 is a function of Re. It is assumed here that 7* includes some powers
of derivatives of 77 with respect to Re. If the fluctuation function of # is taken as

- dr )
nzcﬁg(t) . [g(n] =1 (34)

?will contain the square of the derivative of lowest order and a positive coefficient. So Eq. (33) becomes
2—

202 jR” —1+277=0 (39)

2
e

The transition starts at Re; and ends at Reg, so the restrictions on 77 are

ﬁ(ReL):O > ﬁ(ReR)zl (36)

The fluctuations of # are both zero in laminar and turbulent flows, and 77 is a monotonic ascending function of
Re, so the restrictions on the derivative of 77 are

47 L, AT
dRe dRe

_ 4
r, dRe

=0 (37

Rep

The solution which satisfies all these conditions is
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1+sin(0) 0 2Re—Re, —Re, 7

7= ' Re,—Re, 2

> (38)

cosd N(t).

and C = (ReR - Re, )/7[ . Substituting Eq. (38) into Eq. (34) yields 77 = g

This solution agrees with the experimental results of Zhang, Zhang, Xiao, Jiang & Le (2013), in which the
experimental Nusselt number Nu in natural transition region is expressed as a weighted superposition of laminar
Nu and turbulent Nu at same Re, and the weighting factor is the same as Eq. (38). Apparently, same rule of
weighted superposition can be applied to the friction factor.

-—e - -
- -

-

_-(1¥sin0)2

% 1
'"'\Ll;sine)/z 0.9
... 08

- 0/m

.\’h
llllllllllllllll‘l‘ﬂ'&k—] lllll

-0.6-0.5-0.4-0.3 -0.21-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3.7, 1-77 and 4/7}° as functions of

It is plotted in figure 3 for 77, 1-77 and ﬂ? as functions of #. One can see the fluctuations of # are large in

transition region. The root mean square values of 77 (\/ﬁz ) are greater than 77 for 6<0, and greater than 1-77

for 6>0. So at some instants, # may be negative when <0, and 1-# may be negative when 6>0. It is possible
because it is the composition of motions of a fluid element which is concerned, not the mixing of two matters.

The above stated large fluctuations can explain the strange effect mentioned by McComb (1992). When a speed
is reached in pipe--flow experiment, a critical Re is also reached, and the manometer reading begins to oscillate
wildly. This behavior continues over a range of speeds, until a speed is reached where the manometer reading

steadies again and thereafter remains steady.
Since # is same at a cross section, uz,, is a weighted superposition of laminar and turbulent values at same Re in

transition region. One can have #, ~ and #, by integrating Eq. (28) along a radius, which are

Uy =(1=7)u+7u (39a)

Uy, =70 +7 (0 —u+i) (39b)

These are the mean longitudinal velocity and the instantaneous fluctuation velocity. They can be measured at the
center line in flow experiment, and the results can be compared with those predicted by Eq. (39).

Water at room temperature was used in pipe-flow experiments by Durst & Unsal (2006), Nishi, Unsal, Durst &
Biswas (2008) and Nishi (2009), which includes many forced transitions and a small quantity of natural
transitions without heating. According to Re=pU d/u, experiments with different Re can be conducted by
changing the mass flux of water, then the statistics of the longitudinal velocity and its fluctuations can be
measured between the start and end of transition. The present derivations can be used to explain such transition
processes in which the physical properties are constant.
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Figure 4. The large overshoot of / at the center line in transition region
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Figure 5. The large overshoot of / at the center line in transition region, both the shape and values can be
compared with the measurements by Durst & Unsal (2006)

The difference between laminar and turbulent mean velocities at same Re is large compared with # , so from Eq.
(39) one can see there should be an overshoot of the longitudinal velocity fluctuations in the process of

laminar-to-turbulent transition of pipe-flow. This was clearly measured by Durst &Unsal (2006). For comparison

one can calculate the fluctuation intensity / (= u'/ i, ) at the center line. If the change of u/_, / u_, forfully

Tran
turbulent flow with Re is ignored, and the data in figure 3 of Durst &Unsal (2006) are chosen for estimation,

which are u_, =1.4U, and u'_, =0.035u,_, for turbulent flow, and u,_, =2.0U, for laminar flow (in

mean mean

which the fluctuation intensity is about 0.002), Eq. (39) gives a peak value of 20.7% at 6/2~0.07 for [ at the
center line, which is shown in figure 4. The value of measurement of Durst &Unsal (2006) is around 20% when
Re;>4000. In figure 4, the value of u' is defined from Eq. (39b) as following

u'=\/a=\/ﬁzf7+?[(ﬁ—u)z+g}ra (40)

In Eq. (40) the fluctuation intensity (about 0.002 in figure 3 of Durst & Unsal (2006)) is considered for laminar
flow.

Figure 5 is a different form of figure 4. The y-axis is in logarithm scale and the x-axis is displaced and contracted
in figure 5, so one can easily make a comparison with the measurements by Durst & Unsal (2006). Both the
shape and values in figure 5 are very close to those in figures 3, 5 and 10 (measurements) of Durst & Unsal
(2006) when Re;>4000 (the experimental data are inappropriate to be extracted so that one can make a detail
comparison). The similar measurement of such overshoot was given by Nishi, Unsal, Durst & Biswas (2008) and
Nishi (2009). It was also reported by Durst & Unsal (2006) that the overshoot of / did not result in a
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corresponding overshoot of the friction factor (should be the averaged value). This can also be explained by the
present formulations.

The measured mean values of longitudinal velocity and its fluctuations at the center line during the forced

transition were given by Nishi (2009). They are compared with present predictions in figure 6 and figure 7. The

change of u/_, / u_, for fully turbulent flow with Re is ignored in predictions. From figure 6 one can see that

present predictions using Eq. (39a) agree with the measurements for the longitudinal velocity at the center line
during the transition. From figure 7 one can see that present predictions using Eq. (40) approximately give the
trend of the mean values of fluctuation of longitudinal velocity at the center line during the transition when
Re;=2120. But the predictions have a larger peak value, and the values or even the trends are different from those
of the measurements just before or after the transition. From figure 10 of Durst & Unsal (2006) one can see that
the fluctuation intensities (/, see figure 5) of longitudinal velocity at the center line when Re;<3000 have smaller
peak values than those when Re;>4000. The reason needs further studies. When Re;>4000, all the experimental
data by Durst & Unsal (2006), Nishi, Unsal, Durst & Biswas (2008) and Nishi (2009) are inappropriate to be
extracted for detail comparisons. For the data further before or after the transition, the calculated values and
trends in figure 7 agree with those of the measurements by Durst & Unsal (2006), Nishi, Unsal, Durst & Biswas
(2008) and Nishi (2009).

5.0

[ i (r=0),m/s
45
4.0F

- 2.0 times mean
3.5F | flow velocity.
3.0 E_ 1.4 times mean
2.5F flow velocity.
2.0F
1.5 — prediction, present
1.0 - u measurement, Nishi (2009)
05F Re, =2120, Re,=2530

- Re
0.0 & [ RN SNRNETETEN EYRNEETE SRR B |
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Figure 6. The calculated and measured mean values of longitudinal velocity at the center line

08 (r=0), m/s
0.7
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- | |
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Figure 7. The calculated and measured mean values of the fluctuations of longitudinal velocity at the center line
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O fvan.. 10 EQ. (32) is 0 when Eq. (33) are valid. So Eq. (31) can be rewritten as

GTran = O-Turb,X + O-Turb,v + (1 - 77) (GLam,G) + GLam,V ) + ﬁ(GTurh,G) + GTurb,u ) (41)

Comparing Eq. (41) with Eq. (31), one can see that the evolution of transition takes place in such a way that, the
negative entropy production due to the composition of two flow modes balances out the positive entropy
production due to the fluctuation of #. In this way 77 progresses continuously from 0 to 1, and the entropy
production in transition flow is formally a weighted superposition of those in laminar and turbulent flows at
same Re.

In laminar-to-turbulent transition # is adopted to describe the composite flow. The evolution of transition flow is
given by Eq. (38) which is derived from Eq. (34). Equation (34) gives the fluctuation of #. Different form of Eq.
(34) leads to different form of Eq. (38). From the comparisons with the experimental phenomena given above,
one can conclude that the statistics of fluctuations and the flow and convective heat transfer behaviors of natural
transition flow inside the tube can be explained using the present derivations, and the fluctuation of # governs the
evolution of natural transition flow inside the tube.

Lastly, if a different # is adopted for temperature, the corresponding entropy production can be obtained in a
similar form to Eq. (31). Because of the weak coupling of the equations for solving velocity and temperature,
and the separateness of the square terms of temperature and velocity gradients in the expression of entropy
production, this adoption does not change much the discussions above.

7. Conclusions

The statistics of fluctuations and the flow and convective heat transfer behaviors of natural transition flow inside
an electrically heated circular tube can be explained using composition of motions, the fluctuations of composite
ratios, and the minimum entropy production criterion.

(1)The natural transition flow in the tube can be decomposed into fully developed laminar and turbulent
ingredients. The composite flow in transition region are defined by the composite ratios which are the
proportions of the two flow modes.

(2)The composite ratios fluctuate in transition flow, and the fluctuations of the composite ratios govern the
natural transition behavior.

(3)The process of laminar-to-turbulent transition inside the tube, can be compared with phase transitions of the
second kind in thermodynamic equilibrium system. The conceptions for the description of the latter, such as
order parameter and the fluctuation range, can be adopted in the study of the laminar-to-turbulent transition.
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