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Abstract 
In this paper, we have considered a prey-predator model with stage-structure for predator and selective 
harvesting of prey species. A regulatory agency controls exploitation by imposing a tax per unit biomass of the 
prey species. The existence of steady states and their stability are studied. The problem of optimal harvesting 
policy is solved by using Pontryagin's  maximal principle. It is also shown that time delay may cause a stable 
equilibrium to become unstable. Finally, some numerical simulations are carried out.  
Keywords: Dynamic reaction, Stage-structure, Time delay, Optimal harvesting 
1. Introduction 
In a fully dynamic model of an open-access fishery, the level of fishing effort expands or contracts according as 
the net economic revenue to the fisherman is positive or negative. A model which includes this dynamic 
interaction between the net economic revenue and the fishing effort is called a dynamic reaction model. In the 
present paper, we study a dynamic reaction model of a prey-predator system where the selective harvesting of 
prey species is considered. 
Taxation, license fees, lease of property rights, seasonal harvesting etc. are usually considered as possible 
governing instruments for the regulation of exploitation of biological resources which has become a problem of 
major concern now a days. Out of such regulatory options, taxation is considered to be superior because of its 
economic flexibility. Harvesting problems with taxation as a control instrument are studied by Chaudhuri & 
Johnson (1990), Krishna et al. (1998), Chaudhuri (1998), Pradhan et al. (1999), Kar & Chaudhuri (2003), Dubey 
et al. (2002) and references there in.  
Prey-predator models play a crucial role in bioeconomics, that is the management of renewable resources. 
Chaudhuri (1986), Leung (1995), Dai and Tang (1998), Jerry & Raissi (2001), Kar & Chaudhuri (2004), Kar 
(2006) and some other authors have discussed the prey-predator system with harvesting. But they have not 
considered stage structure of species. Some of the stage structure models were considered by Aiello and 
Freedman (1990), Freedman and Gopalasammy (1986), Rozen (1987), Kar (2005), Kar and Pahari (2007) and 
some other authors. In general, stage-structured models exhibit much more complicated dynamics than ordinary 
models. 
It is often that time delays are incorporated in the mathematical model of population biology. The dynamics of 
some stage-structured prey-predator model with discrete delay have been studied by Xu et al. (2004), Gourley et 
al. (2004),  Zhang et al. (2000) and references there in. Xu et al. (2004) discussed the persistence and stability 
of a delayed prey-predator system. Gourley et al. (2004) studied a stage -structured prey-predator model and 
performed a systematic mathematical and computational study. Zhang et al. (2000) formulated a prey-predator 
model with stage-structured for prey and obtained the necessary and sufficient conditions for the system.  
The rest of the paper is organized as follows: a stage-structured prey-predator model with discrete time delay and 
harvesting is established in the next section. Equilibria and their stability, optimal harvesting policy are discussed 
in the third section. Numerical simulation are provided in section 4. Finally the paper ends with a concluding 
remarks.  
2. Formulation of the model 
The ecological setup of the problem is as follows: for the prey-predator system only the prey is harvested and 
hence harvesting does not affect the growth of the predator population directly.Thus it is observed that the 



Modern Applied Science                                                     www.ccsenet.org/mas 

 184

interaction between the harvesting agency and the predator is through the prey. Since the predator is unable to 
evolve a strategy for its survival, the regulating agency comes to the rescue of the predator through a suitable tax 
policy. We now formulate this problem mathematically. The population dynamics of the fishery resource is 
modelled by the equations 
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 with initial conditions 
 
 (2.2) 
 

                                                           (2.3) 
 

Here )(11 tNN =   is the size of the prey population at time t, 

)(22 tNN =  is the size of immature predator population at time  t, 

)(33 tNN =  is the size of the mature predator population at time t, 

)(tEE = is the  harvesting effort at any  time t. 

 All these populations are growing in a closed homogeneous environment. We consider the logistic growth of 
prey with birth rate 1r  and carrying capacity k. At any time t (>0), the birth rate of immature predator is 
proportional to the density of existing mature predator with proportionality constant β . The death rates of 

mature and immature predators are  23 , rr  respectively. The term  2
3Nd   in the third equation is taken due 

to interspecific competition between the predators. The rate of conversion from immature predators to mature 
predators is   αγ ;  is also a conversion factor, τ  is discrete time delay which is the time interval between 
the moments when an individual prey is killed and when some fraction )10( << mm  of the corresponding 
biomass is added to the mature predator. The constant q  is catchability co-efficient, p   is the fixed price per 
unit of prey species, c   is the fixed cost of harvesting per unit of effort and λ  is called stiffness parameter 
used to measure the reaction of harvest effort.   

To conserve the population in the prey-predator system the regulatory agency imposes a tax 0>σ  per unit 
biomass of the prey. The harvesting agency and regulatory agency are actually to different components of the 
society at large. Hence the revenues earned by them are the revenues accrued to the society. 
The net economic revenue to the society is 

          111 ])[( ENqCENEqpCEENpq σσ +−−=−  

which equals the net economic revenue to the harvesting agency plus the economic revenue to the regulatory 
agency. 
3. Equilibrium analysis 
From biological point of view we only concentrate on the interior equilibrium of the model where all species 
co-exist. The interior equilibrium of the model system (2.1) is ),,,( **
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From the expression of  **
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1 and,, ENNN it is easy to check  that the interior equilibrium point exists 

provided  the tax σ   lies in the range 
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and the parameters must satisfy the condition 
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To discuss the stability at the interior equilibrium we construct the Jacobian of the model system (2.1) evaluated 
at the  interior equilibrium P, and write the following characteristic equation 
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We now discuss the stability of interior equilibrium. 
3.1 Stability analysis 

3.1.1 Case I: .0=τ  
In absence of discrete time delay we now investigate the stability of the model system around the interior 
equilibrium and optimal harvesting policy. In absence of delay i.e. when ,0=τ the system (2.1) is reduced to 
the following form: 
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and the corresponding characteristic equation become 
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By Routh - Hurwitz criterion it can be stated that the model is locally stable around the interior equilibrium point 
P if following set of conditions involving the parameters are satisfied. 
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For finding the condition of global sability at ),,,( **
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The time derivative of v is given by  
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Thus the model (when 0=τ ) is globally stable in the region given in(3.15). 

3.1.2 Optimal harvesting policy 
In this section we derive an optimal harvesting policy to maximize the total discounted net revenue from the 
harvesting biomass using σ  (the tax) as a control parameter and keeping the attention to the sustainable 
development of the prey-predator ecosystem. The net economic revenue ),,,,,( 321 tENNN σπ = net 
revenue of harvesting agency + net economic revenue to the regulatory agency 
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From (3.22) we get   
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In order to obtain an optimal equilibrium solution  we get from (3.23) and (3.19) that 
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This provides an equation to the singular path and gives the optimal equilibrium levels of the populations  
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may be concluded that these shadow prices may remain constant over time interval in an optimal equilibrium 
when they satisfy strictly transversality condition at  ∞ . Further they remain bounded when  ∞→t . From 
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effort is equal to the discounted values of the future price at the steady state level. 

3.2 Case II: 0>τ . We now discuss the stability of the model system (2.1) in the presence of delay. Let 
ωμ i=  be a root of (3.5), where ω  is a real number. Putting  ωμ i=  in (3.5) and separating real and 

imaginary parts we get, 
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Squaring and adding these two equations we get, 
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Thus by Butler’s Lemma we conclude that the model system (2.1) is stable around the interior equilibrium for  
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when evaluated at interior equilibrium. 
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That is transversality condition holds and Hopf bifurcation occurs at .0ττ =  

4. Numerical simulation 
We consider the following set of values of the parameters for our numerical simulations: 

,15,05.0,5.0,1.0,3,1.0,5.0,5.0,5.0,100,5.2 321 =========== pdmrrbqkr γα
01.0,5.7 == δc  in appropriate units. 

Then for the above values of parameters optimal tax becomes 73742.13=σ , and corresponding stable 
optimal equilibrium is (11.87044, 9.405178, 1.880436, 2.525543). 
< Figure 1 > 
< Figure 2 > 
< Figure 3 > 
< Figure 4 > 
< Figure 5 > 
< Figure 6 > 
5. Concluding remarks 
Attempts are made to understand the effect of delay on the stability of the considered system. Stability analysis 
shows that the discrete time delay may cause for the stability switch of the model system, and phenomenon of 
Hopf bifurcation occurs as the time delay crosses through a certain threshold. 
In the present work we have elaborated a bioeconomic model which is realistic because we force the fishing 
effort to remain under control by imposing a tax to keep ecological balance. Another important feature of the 
present model is that it assumes a fully dynamic interaction between fishing effort and the perceived rent in the 
case of a prey-predator fishery. 
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Figure 1. Solution curves corresponding to the optimal tax ,73742.13=σ  beginning with 

.1,4,2,5.2 321 ==== ENNN  
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Figure 2. Phase space trajectories of ,& 32,1 NNN  corresponding to the optimal tax 73742.13=σ  begin 
with different initial levels. Trajectories clearly indicate that the optimal equilibrium (11.87, 9.406, 1.881) is 

asymptotically stable. 

 

Figure 3. Variation of prey population with time for different tax levels 
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Figure 4. Variation of immature predator population with time different tax levels 

 

 Figure 5. Variation of mature predator population with different tax levels 
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Figure 6. Variation of harvesting effort with different tax levels 

 

 
 
 
 
 
 
 
 
 


