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Abstract 
A random number can be defined as a set of numbers produced by a numerical function, in which the next 
number is unpredictable and a relationship between successive occurrences is lacking. Moreover, these 
sequences cannot be reproduced unless the same generator function with an exact initial value is used. The 
design of a random number generator must overcome the previous problems of a low periodic and the capacity 
to reproduce the same sequence. This paper proposes the knight tour as a tool for generating pseudo random 
numbers. These random numbers can be use in the encryption process or in a password generator for network 
administrators. The randomness test suite is used to ensure the randomness of outcome sequences. Roughly, 75% 
of the test results obtained is better than the results from other works. The statistical properties and security 
analysis indicate that the knight tour application is highly successful in generating a pseudo random number with 
good statistical results, high linear complexity and strong capacity to withstand attacks. 
Keywords: knight tour, random generator, random number, randomness tests 
1. Introduction 
Random numbers are widely used for many applications, such as keys for encryption and decryption, numerical 
analysis, simulating and modelling, as well as for selecting random samples from larger data sets (Li, 2012; 
Mahmood & Rahim, 2014; Tong, Liu, Zhang, Xu, & Wang, 2015). A random number can be generated by 
measuring random physical phenomena, such as temperature, wind speed and sunlight level. This type of 
generator is called a true random number generator (TRNG). TRNG requires additional equipment to produce 
random numbers and lacks the capacity to regenerate the same sequence unless the same initial key is used. It 
hardly ever regenerates the same random sequence because the sequence produced comes from the natural 
particular physical phenomenon. Another type of generator, called pseudorandom number generator (PRNG), 
uses mathematical algorithms to generate the random numbers. PRNG is more suitable for generating crypto 
keys because it is capable of regenerating the same random sequence and additional equipment to obtain the 
initial seed is unnecessary. PRNGs are also periodic generators, that is, they regenerate the same sequence after a 
certain round. 
Generators for random numbers are characterized by several general properties. Firstly, they cannot predict the 
next number in the sequence. Secondly, the appearance probability of any element in the sequence is equal to 
other elements in the same sequence. Thirdly, the random sequence cannot be reproduced unless the same initial 
value is used (Rahman et al., 2014). Several methods for generating random numbers can be employed, such as 
genetic algorithms, neural networks and shift registers (Dubrova, Naslund, & Selander, 2014; Hrdy, Prazan, & 
Holoubek, 2014; Shenoy, Srikanth, & Srinivas, 2013; Toso & Resende, 2014). 
The proposed method in this paper overcomes the problems in most previous works; these problems include a 
large initial seed and incapacity to regenerate the same sequence even with the same initial seed (Anceaume, 
Brasileiro, Ludinard, Sericola, & Tronel, 2011; Chen, 2013; Xingyuan, Xue, & Lin, 2012; Zhao, Ran, Yuan, Chi, 
& Ma, 2015). 
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The proposed method generates a pseudo binary random number sequence by implementing the knight tour 
problem. The knight tour problem is a mathematical problem involving the identification of a sequence of moves 
of a knight (on a chessboard) based on the knight movement rule in a chess game. The produced sequence is 
tested with a statistical test suite and security analysis is performed to verify that such sequence meets the 
specification of random numbers. The obtained results indicate that the proposed method could successfully 
generate pseudo random numbers with good statistical and security properties and high linear complexity. 
This paper is organized into several sections. Section 2 briefly examines previous works on random number 
generators. Section 3 provides a detailed explanation of knight tour. Section 4 provides the general definition of 
random numbers. Section 5 describes the statistical tests. Section 6 discusses the proposed system. Section 7 
details the experimental results. Finally, Section 8 presents the conclusions. 
2. Related Works 
Several methods for generating random number have been proposed indecent years. Most of the methods were 
implemented in hardware rather than software (De Schryver et al., 2012; VishnuRaj & Yuvaraj, 2014). These 
methods provide a maximum periodic of random sequence and high throughput rate while adhering to 
established statistical standards by applying a seeding mechanism. To generate random numbers, previous 
generator shave used prime number theory (Kumar & Dhiman, 2015), audio and video sources (Chen, 2013), 
mouse motion and one-dimensional chaotic map (Hu, Liu, & Ding, 2013; Liu, Yang, Zhang, & Du, 2014), 
biometric feature of human iris (Taherdoost, Chaeikar, Jafari, & Shojae Chaei Kar, 2013) and even the contents 
of input/output buffers (Pardo, 2012). 
However, most of these methods require large initial values to start (Chen, 2013; Deng, Hu, Xiong, Xiong, & Liu, 
2015). This requirement is undesirable if the generator is used to produce cryptography keys. In the management 
of cryptographic keys, in which these keys need to be exchanged between sender and recipient, a large initial key 
will require additional efforts or resources to be sent; this requirement slows down delivery and spurs security 
problems. Furthermore, not all of the previous generators are ‘re-generate able’ (Hu et al., 2013; Xingyuan et al., 
2012). 
When a key sequence must be reproduced, the same initial value has to be used. Hence, generators that depend 
on a physical initial seed (i.e. wind speed and temperature) would be incapable of regenerating the same key 
sequence because the same initial value is impossible to obtain. Moreover, some of the previous generators fail 
in randomness statistical tests because the generated sequences are insufficiently random (Pashley, 2014). To 
overcome these issues and obtain a good random sequence, this paper proposes the use of the knight tour 
problem, which is described in detail in the next sections. 
3. Knight Tour 
Knight tour is an arithmetical problem relating to a knight’s move on a chessboard. The knight is positioned on 
an empty board and peddling according to the rules of the knight moves in a chess game, where each square 
must be visited exactly once (Elkies, Stanley, Kleber, & Vakil, 2003). Five sets of moves are possible for the 
knight according to its position on the chessboard, as illustrated in Figure1. If the knight is at the corner of the 
chessboard, then it can be moved to two positions, as shown in Figure1 (a). The nearer the knight’s position in 
the centre, the more choices of movements it has, as depicted in Figures 1(b), (c) and (d). All of the possible 
movements can be expressed in a single representation, as demonstrated in Figure1 (e). 

  
(a) (b) 
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Figure 1. Different Knight Moves in a Chess Game, (a) Corner Position (b) Top Position (c) Semi-Top Position 
(d) Centre Position 

 
A knight’s tour is called a closed tour if the knight ends in the same starting position, such that it may tour the 
board again immediately with the same path. If it does not, the tour is called an open tour (Golenia, Golenia, & 
Erde, 2012). Both instances are illustrated in Figure 2. 
 

 
Figure 2. Two Strategies of Knight Moves in a Chess Game 

 
The precise number of moves in an open tour remains unidentified, whereas the number of moves in a closed 
tour can be approximately determined by the number of moves in an equal chessboard size (n × n) (Gusfield, 
1997; Löbbing & Wegener, 1996). Furthermore, researchers have suggested several methods for identifying the 
knight moves in an unequal chessboard (n × m) (Pampara, 2012). This type of generation can be classified into a 

  
(c) (d) 
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4 6 8 8 8 8 6 4
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(e) 
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deterministic random number generator (Blum, Blum, & Shub, 1986). 
Numerous methods have been previously used instating a programming solution to the knight tour problem; 
these methods include intelligence searching–backtracking algorithm (Bai & Cao, 2001), heuristic approach with 
minimal outlet (Zhang & Zhang, 2012), depth-first search algorithm (Gordon & Slocum, 2004) and divide–
conquer method (Sen & Xiao, 2000). Moreover, optimization has been used to solve this problem; the algorithms 
for optimization include neural network algorithm (Takefuji & Lee, 1992), genetic algorithms (Al Gharaibeh, 
Qawagneh, & Zahawi, 2007) and ant colony optimization algorithm (Jiang, Bai, & Dong, 2009). 
4. Random Numbers 
The sequence of numbers can be called a random number if the numbers lack a relationship with one other, and 
the possibility of appearance is equal to all of the sequence numbers(Barker & Kelsey, 2007). 
Two fundamental methods are used in generating random numbers. The first method, called non-deterministic, 
depends on physical processes that are changeable; these processes include radioactive decay, thermal noise, 
transistor noise, computer clock, keyboard and mouse movements. The second method computes random bits 
using an algorithm; this class of random bit generator is known as deterministic random bit generator 
(Armknecht, Maes, Sadeghi, Standaert, & Wachsmann, 2011). 
Based on the observations performed with different random number generators, a good and reliable generator 
should exhibit several properties; the properties are summarized in Table1 (Akhshani, Behnia, Akhavan, Lim, & 
Hassan, 2010; Ferrenberg, Landau, & Wong, 1992; Hellekalek, 1998).  
 
Table 1. General Properties of Random Number Generator 
Property Description 

Impervious An attacker who is aware of a portion of the input to the generator should be unable to 
use this information to recover the generator’s state. 

Opposing An attacker who is able to feed a chosen input to the generator should be unable to 
influence its state in any predictable manner. 

Resistant to analysis An attacker who recovers a portion of the generators output; should be unable to recover 
any other generator state information from this. 

Protect internal  
state 

A generator should take steps to protect its internal state to ensure that it cannot recover 
through techniques. 

Unequivocal for any 
activities 

Explicit any actions such as extracting data in order to allow the conformance of the 
code to the generator design for easily checked. 

Information leakage Any leakage of internal states that would allow an attacker to predict further generator 
output should be regard as a catastrophic failure of the generator. 

Tests Perform any viable tests on the generated sequence to ensure that it is not producing bad 
output or is stuck in a cycle and repeatedly producing the same output. 

 
5. Randomness Statistical Tests 
Many tests can be applied to measure the randomness strength in the generated sequence (Fernández, Quintas, 
Sánchez, & Arias, 2015; Zhou, Liao, Wong, Hu, & Xiao, 2009). A binary string can be considered a random 
stream if no observable relationship exists between the individual bits of the sequence. The sequence generated 
by any algorithm should not be periodic (i.e. recurring at intervals of time). Sequences that are periodic cannot 
be regarded as true random sequences, but pseudorandom sequences (Abdulbari Ali, 2005; Pareschi, Setti, & 
Rovatti, 2010). 
Many types of tests can be used for determining whether the generated sequence is random or not, such as Beker 
and Piper test suite (Beker & Piper, 1982), Diehard test suite (Marsaglia, 1996), TestU01 test suite (L'Ecuyer & 
Simard, 2007) and NIST-SP-800-22 test suite(Rukhin, Soto, Nechvatal, Smid, & Barker, 2013). 
The NIST-SP-800-22 test suite is used in this work because it is one of the most extensively employed inspection 
standards thus far; moreover, this test suite can be applied on a binary sequence. This test contains 15 methods. 
The value of each test is named as P-value, which represents the degree of randomness of the tested binary 
sequence. A P-value larger than 0.01 indicates that the sequence passes the test, and is thus considered a random 
sequence (Rukhin et al., 2013). 
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6. Proposed System 
From a functional viewpoint, the proposed system will apply the knight’s tour problem as a tool for generating a 
pseudo random number that can be used as an encryption key or password generator. Several randomness tests 
are also used to verify the randomness strength of the numbers produced. The proposed work is presented in 
Figure 3. 
 

 
Figure 3. Flowchart of the Proposed System 

 
The above figure represents the main steps for generating a random number. Three steps are applied for the 
generating process; these steps can be described as the following, choosing initial position on the chessboard and 
consider it as a seed for the generator. Apply the knight tour to fill the chessboard with the different moves. Then 
convert the sets of moves to binary number and tests them during statistical tests. 
The following steps are under taken in the proposed work and describe the detail descriptions of the 
implementation of the proposed method, all which explained in figure 4, which represents the pseudo code of the 
proposed method: 
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Figure 4. The pseudo code of the Proposed method 

 
Figure 4 explains the detail descriptions of the implementation, where the pseudo code can reflect the actual 
picture to the proposed method.  
7. Experiment Results and Discussion 
The process of generating random numbers begins with the specification of the start cell of the knight in an 8 × 8 
chessboard. The generated tour is an open tour because the end cell is not in the same position as that of the start 
cell. Each run can generate 64 random numbers, and these numbers can subsequently become a 512-bit number 
when converted to a binary format. Figure 5 illustrates the sequence of generating the random binary bits. 

 
Figure 5. Generating Sequence: (a) Select an initial position (b) Knight moves to fill the chessboard (c) Save the 

moves in an external file (d) Convert to a binary format 
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The implementation of the proposed method explained in previous figure, where this figure describes the details 
descriptions of the generating steps. While choosing the initial position and then generating the knight moves to 
fill the chess board then convert these moves to binary sequence. 
7.1 Statistical Analysis 
For the statistical analysis, 10 set of pseudo random numbers are tested. The sets of numbers consist of 512 
random bits for each set generated by the proposed method. The generated binary  sequence by the proposed 
method passes the NIST-SP-800-22 (Rukhin et al., 2013) test suite. Table 2 and Figure 5 demonstrate the results 
obtained from the tests. 
 
Table 2. NIST Tests Results 
 1 2 3 4 5 6 7 8 9 10 
Approximate 
Entropy Test 0.431 0.519 0.483 0.547 0.672 0.578 0.689 0.543 0.463 0.593 

Block 
Frequency 
Test 
 

0.311 0.542 0.209 0.214 0.281 0.353 0.401 0.394 0.295 0.389 

Cumulative 
Sums Test 0.542 0.653 0.424 0.372 0.623 0.670 0.739 0.619 0.524 0.344 

Discrete 
Fourier 
Transform 
Test 

0.813 0.951 0.747 0.781 0.753 0.848 0.832 0.842 0.796 0.837 

Frequency 
Test 0. 011 0. 019 0.014 0.012 0.013 0.010 0.019 0.014 0.013 0.019 

Linear 
Complexity 
Test 

0.841 0.992 0.713 0.860 0.718 0.817 0.880 0.866 0.745 0.885 

Longest Run 
Test 0.615 0.802 0.573 0.656 0.651 0.769 0.887 0.758 0.589 0.738 

Non 
Overlapping 
Template 

0.341 0.407 0.310 0.210 0.365 0.252 0.351 0.209 0.391 0.289 

Overlapping 
Template 0.316 0.385 0.373 0.231 0.348 0.459 0.421 0.417 0.320 0.469 

Random 
Excursions 
Test 

0.341 0.371 0.109 0.141 0.198 0.242 0.372 0.285 0.265 0.206 

Rank Test 0.501 0.762 0.459 0.346 0.574 0.652 0.668 0.597 0.489 0.565 
Runs Test 0.754 0.940 0.710 0.361 0.710 0.816 0.819 0.857 0.869 0.824 
Serial Test 0.318 0.468 0.284 0.196 0.189 0.257 0.360 0.283 0.213 0.253 
Universal 
Statistical Test 0.651 0.737 0.408 0.463 0.358 0.539 0.576 0.548 0.407 0.580 

 
The result value obtained from each test represents the degree of randomness of the tested sequence. A value 
larger than 0.01 indicates that this sequence passes the test, and the sequence is considered a random number 
sequence (Rukhin et al., 2013). All of the results presented in Table 2 are larger than 0.01; thus, all 10 sequences 
can be regarded as random. However, the frequency test results shown in Table 2 are the same in all 10 sets of 
the generated sequences. This result occurs because the binary bits are generated from the same set of integer 
numbers, but with different positions in each set. Hence, the number of ones and zeroes will be equal in all sets, 
but a different consequence of zeroes and ones will emerge. In addition, the low values of the frequency test and 
nearness to the failure condition may be attributed to the process of converting the decimal numbers to a binary 
system. Each decimal number is equal to 8 bits in a binary system; by contrast, decimal numbers smaller than 64 
indicate that most bits in any converted number are equal to zero. Consequently, the number of zeroes is higher 



www.ccsenet.org/mas Modern Applied Science Vol. 10, No. 4; 2016 

42 
 

than the number of ones in the generated binary sequence. 
After proving that the proposed generator is a random generator with good statistical properties, the advantage of 
this generator over the other generators should be demonstrated through a comparison of the results with those of 
previous works. As illustrated in Table 3, the comparison between the average of the 10 generated sequences 
using the proposed generator and four different generators indicates that they all use NIST-SP-800-22 as a 
random test method.  
 
Table 3. Comparison of the Proposed NIST Test Results and the Results of Others Works 

Tests Proposed 
Generator 

Hyper chaotic 
Map, 
(Tong et al., 
2015) 

Chen Chaotic 
Map, 
(Hu et al., 
2013) 

Discrete 
Devaney’s 
Chaotic Map, 
(Deng et al., 
2015) 

Mouse Movement 
and Chaotic Hash 
Function, 
(Zhou et al., 2009) 

Approximate Entropy 
Test 0.9769 0.8184 0.1554 0.5039 0.9737 

Block Frequency Test 0.7938 0.2095 0.4968 0.7222 0.2236 
Cumulative Sums Test 0.9012 0.5922 0.8894 0.5850 0.1875 
Discrete Fourier 
Transform Test 0.6204 0.7120 0.1957 0.5946 0.2622 

Frequency Test 0.0107 0.1455 0.8556 0.5283 0.1223 
Linear Complexity Test 0.8694 0.9018 0.8687 0.4973 0.3267 
Longest Run Test 0.9091 0.3943 0.6153 0.9087 0.0616 
Non Overlapping 
Template 0.5802 0.4064 - 0.4774 - 

Overlapping Template 0.7904 0.0459 0.6224 0.7742 - 
Random Excursions 
Test 0.6503 0.3757 0.2117 0.4585 0.6325 

Rank Test 0.5718 0.8510 0.3430 0.4083 0.0391 
Runs Test 0.9038 0.4811 0.8965 0.1390 - 
Serial Test 0.6836 0.2110 0.0672 - 0.6434 
Universal Statistical 
Test 0.6792 - 0.6508 0.1558 - 

 
Table 3 shows a comparison between the average results of the 10 random sets generated by the proposed 
method and four binary random generation methods (Tong et al., 2015), (Hu et al., 2013),(Deng et al., 2015)and 
(Zhou et al., 2009), respectively. All of these methods use NIST-SP-800-22 as a random testing suite. A 
comparison of the items in Table 3 suggests that several items of the proposed generator exhibit better results 
than those of the other four generators. This result is attributed to the dependence of the works of the pass tests 
on blocks, in which the probability of the occurrence of the redundancy of the block is extremely low against 
other tests whose works depend on the probability of bit occurrence. The proposed method clearly achieves the 
goal of generating random numbers with good statistical results compared with the other examined generators. 
However, the frequency test values do not meet the perfect value as explained in the preceding discussion of 
results. 
7.2 Security Analysis 
An excellent generator method must be robust against several types of cryptanalytic, statistical and brute force 
attacks. Different types of analysis are applied to measure the strength of the proposed generator method against 
different decryption trials, as described in the subsequent section. 
7.2.1 Key Space Analysis 
The size of the key space represents the overall number of keys used for encryption. A direct relationship exists 
between key space size and security. A proficient encryption method must have a large key space (i.e. 
approximately larger than 2100) to render brute force attacks infeasible (Alvarez & Li, 2006). In the proposed 
generator, each round can generate 512 random bits from different 64 decimal numbers; the total number of 
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different keys is equal to 2512 ≈ 1.34 × 10154; thus, this key space is sufficiently large for resisting all forms of 
brute force attack. 
7.2.2 Key Sensitivity Analysis 
Key sensitivity is examined by selecting a set of keys and performing a small alteration on it to produce new 
keys; the differences between these two sets are subsequently computed. For a good encryption algorithm, key 
sensitivity should be more than 50% (Saranya, Mohan, & Anusudha, 2014). The testing conducted in this work 
shows a variance ratio of approximately 62%, even if the change is small. The good results from this analysis 
indicate that the selected plain text attacks and linear cryptanalysis do not influence the generated keys; 
consequently, the encryption algorithm is unaffected. 
7.2.3 Linear Complexity Analysis 
The linear complexity of algorithm concerned on how fast or slow for particular performs. In the proposed 
generator can be defined as a slight recurrence in linear feedback shift register (LFSR) to generate the random 
sequences. A proficient Berlekamp–Massey algorithm of linear complexity is proposed in (Eidelman & Gohberg, 
1997).  

 
Figure 6. Linear Complexity Analyses 

 
This algorithm computes the smallest LFSR. The results obtained from this analysis are presented in Figure 6, 
where the linear complexity is near the ideal values, thereby indicating that the generated sequences exhibit a 
linear complexity against different types of attack. 
8. Conclusions 
This paper has designed and tested the use of the knight tour algorithm as a pseudo random number generator; 
this process was achieved in two steps. Firstly, a knight move sequence was generated to fill an 8 × 8 chessboard, 
and these numbers were considered pseudo random numbers. Secondly, the NIST test suite was used in checking 
randomness and in considering the criteria of accepted randomness. The original goal was clearly achieved by 
solving most of the difficulties encountered by the generator designers of small initial value and not depending 
on the physical seed. The statistical tests and security analysis demonstrate that the proposed system is highly 
successful in generating pseudo random numbers with good statistical properties, large key space and resistance 
to various types of attacks. The proposed system can be used for generating cryptographic keys, as password 
generator, game key generator and probability in mathematics. 
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