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Abstract 
The robust stability for neutral network with discrete and distributed delays is devoted. The stability analysis problem is 
converted into a convex optimization problem, and a linear matrix inequality (LMI) approach is utilized to establish the 
sufficient condition for the globally robust stability. This condition can be easily checked by using the MATLAB LMI 
Toolbox. 
Keywords: Time-delay system, Uncertainty, Stability, Linear matrix inequality, Neural networks 
1. Introduction 
Time-delays inevitably exist in neural network for various reasons, and it can induce chaos instability in the neural 
network. Therefore stability analysis for neural networks with time-delays has been an attractive subject of research in 
the past years a. It is worth noting that, although the signal propagation is sometimes instantaneous and can be modeled 
with discrete delays, it may also be distributed during a certain time period so that the distributed delays should be 
incorporated in the model. In other words it is often the case that the neural network model possesses both discrete and 
distributed delays. 
In view of the importance of both discrete and distributed delays in modeling neural networks, the dynamics analysis 
problem for neural networks with discrete and distributed delays has received much attention. Chen Wenhua, Lu 
Xueming. (2006) reported that robust stability for neural network with discrete and distributed delays has been studied. 
However, the restriction of time-delay is less than 1. In this paper, based on Lyapunov stability and linear matrix 
inequality, delay-dependent robust stability is derived .the result is obtained under mild conditions, assuming neither 
differentiability nor monotony for activation function. This condition can be easily checked by using the MATLAB LMI 
Toolbox. 
2. Problem Formulations 
Considering the following neural networks with discrete and distributed delays 
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Where nT
n Rtxtxtxtx ∈= ))(,),(),(()( 21 L is the neuron state vector; ),,,( 21 nkkkdiagK L=  is a diagonal 

matrix with ),,2,1(,0 niki L=> ; nnijaA ×= )( nnijbB ×= )( are the constant matrices with appropriate dimensions; 
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Base on the Brouwer’s, equilibrium point will be moved to the origin 
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3. Main Results 

Theorem1   Define ),( 22111
+−+−= lllldiagL L , ),,( 112

+−+− ++= nn lllldiagL L , for any given ,)(0 dtd ≤≤ if 

there exist matrices 0P > , 0R > , 1 0Q > , 2 0Q > ,positive definite diagonal matrix 

),,( 1111 nuudiagU L= , ),,( 2212 nuudiagU L= and some appropriately matrices )3,2,1( =iX i , )3,2,1( =iYi , 
makes the establishment of the following matrix inequality, then system (2) In the equilibrium is globally 
asymptotically stable 
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Where  

111211111111 2 EEULYKKYXXQ TTTT εψ +−−−++=  

TTT XYKYP 22112 +−−=ψ  

TYYdR 2222 −−=ψ  

3133133 2)1( ULXXQ T −−−−−= μψ  

2222244 2 EEUQ Tεψ +−=  

3333255 2)1( EEUQ Tεμψ +−−−=  

*stand for Symmetry elements of matrix transpose 
Proof   Construct the Lyapunov-Krasovksii functional: 
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Base on Leibniz-Newton formula and Schur lemma, we can get  
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Then 0)( <
⋅

tV , system (2) In the equilibrium is globally asymptotically stable. 

4. Numerical Examples 
Examples 1 Consider the following neural networks with discrete and distributed delays 
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Ensure time-delay system (6) stability and the maximum lag time d  of progressive Park Ju H. (2006) and Song 
Qiankun, Cao Jinde. (2007) reported that 5658.0=d , 74.0=d . By theorem 1, the method shows 7192.1=d  
And 
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Compared with some existing results, the criteria obtained in our paper are less conservative. 
5. Conclusion 
In this paper , by using the method of Lyapunov and LMI. One sufficient condition for neural networks with discrete 
and distributed delays is derived. Finally compared with some existing results, the criteria obtained in our paper are less 
conservative. 
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