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Abstract 
This paper presents experimental work on quasi static compression tests on aluminum AA 6063 circular and 
square tubes. Specimen tubes with ratio of R/t = 12 and b/t = 24 for circular and square tubes respectively were 
prepared and validated with several analytical model developed by previous researchers. Two definitions of flow 
stress were used for validate the test result, first were proposed by Abramowicz and Jones (Wierzbicki & 
Abramowicz, 1983), defined as mean stress between yield stress and ultimate tensile stress. Secondly, using 
ultimate tensile stress as flow stress. For circular tubes test result is in better agreement with the analytical model 
by Guillow et al. (Guillow, Lu, & Grzebieta, 2001) using ultimate tensile stress as flow stress. Meanwhile for 
square tubes, test result agrees better with the analytical model by Abramowicz and Jones (Abramowicz & Jones, 
1984a) using flow stress as the mean stress between yield stress and ultimate tensile stress. 

Keywords: energy absorption, compression, thin walled tubes, flow stress, analytical model 

1. Introduction 

Safe design of components and systems for vehicle is of interest to general public. The impact of transport 
vehicle as an example is an unfortunate but common daily occurrence. It is becoming apparent that, in the future, 
transport structures will have to be designed to minimize effects from impacts and crashes. The current trend in 
producing lighter structures puts greater demands on the designer since more aspects of design become critical as 
the weight is reduced, and working stresses become closer to the ultimate strengths of the material (Abramowicz, 
2003; Sun, Xu, Li, & Li, 2014). 

Aluminum is quite a new material in modern car body design. A 25% weight reduction can be achieved by using 
aluminum compared to conventional steel structures. The lower weight reduces the fuel consumptions and the 
emission carbon dioxide (Kim & Wierzbicki, 2001; Kim, 2002). 

An energy absorber is a system that converts, totally or partially, kinetic energy into another form of energy. 
Energy converted is either reversible, like strain energy in solids, or irreversible like plastic deformation energy. 
When designing a collapsible energy absorber, one aims at absorbing the majority of the kinetic energy of impact 
within the device itself in an irreversible manner, thus ensuring that human injuries and component damages are 
minimal (Abdewi, Sulaiman, Hamouda, & Mahdi, 2008; Abramowicz, 2003; Alghamdi, 2001; Jones, 2010; Reid 
& Reddy, 1986; Reid, 1993; Salehghaffari, Tajdari, Panahi, & Mokhtarnezhad, 2010; Santosa & Wierzbicki, 
1998; Seitzberger et al., 2000; X. W. Zhang, Su, & Yu, 2009). 

1.1 Thin Wall Tube 

The earliest theoretical analysis of thin walled tube was pioneered by Alexander(Alexander, 1960). He proposed 
a rigid, perfectly plastic and simplified deformation pattern of progressive crushing of a circular thin wall tube. 
The model consisted of two limbs with a plastic hinge between the limbs. The plastic hinges are developed from 
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the total of inside or outside folding and the overall length is potentially to be crushed during deformation. This 
model illustrates the general approach which appears to be basic the basic platform of many later studies. For 
example, Abramowicz and Jones (Abramowicz & Jones, 1984a) improved Alexander (Alexander, 1960) model, 
and introduced analytical model for square tubes. Wierzbicki and Bhat (Wierzbicki & Bhat, 1986) enhanced the 
analytical model by stiffening phase of the tube resistance. Guillow et al. (Guillow et al., 2001) improved the 
model by expand the ratio D/t to 10-450.  

The potential of thin wall tubes as an excellent energy absorber is further explored by investigating the influence 
of geometrical structure on its energy absorption capacity. The effect of length, wall thickness and diameter are 
studied by varying these parameters. On the contrary, it has been observed that the deformation may occur in 
overall Euler buckling mode which is undesirable in term of energy absorption if the length of tube is greater 
than its critical length. Wall thickness and diameter appear to affect the impact response of thin wall tubes in the 
form of wall thickness to radius ratio. It showed that the initial peak stress remains at constant value with the 
same value of the ratio. In another study, the energy absorption is noted to be greater with increasing thickness 
for smaller section tubes. 

Then new of the shape of tubes were introduced to study behavior and develop analytical models such as square 
tubes, (Abramowicz & Jones, 1984b, 1986, 1997; Alghamdi, 2001; Bodlani, Yuen, & Nurick, 2009; DiPaolo, 
Monteiro, & Gronsky, 2004; Feraboli, Wade, Deleo, & Rassaian, 2009; Fyllingen, Hopperstad, & Langseth, 
2007; Hanssen, Langseth, & Hopperstad, 2000; Jensen, Langseth, & Hopperstad, 2004; Jones & Abramowicz, 
1985; Jones, 2003, 2010; Kim, 2002; Langseth, Hopperstad, & Berstad, 1999; Langseth & Hopperstad, 1996; 
Ma & You, 2013; Mamalis & Johnson, 1983; Reid, 1993; Santosa & Wierzbicki, 1998; Tarigopula, Langseth, 
Hopperstad, & Clausen, 2006; Wierzbicki, Recke, Abramowicz, Gholami, & Huang, 1994; Yin, Wen, Liu, & 
Qing, 2014; Yuen & Nurick, 2009; X. Zhang, Cheng, You, & Zhang, 2007; X. Zhang, Wen & Zhang, 2014; X. W. 
Zhang et al., 2009), corrugated tubes,(Abdewi, Sulaiman, Hamouda, & Mahdi, 2006; Abdewi et al., 2008; Chen 
& Ozaki, 2009; Elgalai, Mahdi, Hamouda & Sahari, 2004; Mahdi, Mokhtar, Asari, Elfaki & Abdullah, 2006; 
Singace & El-Sobky, 1997) multicorner columns, frusta,(Alghamdi, 2001; Mamalis & Johnson, 1983) 
struts,(Alghamdi, 2001) honeycomb cells,(Alghamdi, 2001; Santosa & Wierzbicki, 1998) sandwich 
plates(Alghamdi, 2001; Mohr & Wierzbicki, 2003) and some other special shapes such as stepped circular thin 
walled tubes and top hat thin walled sections (Jones, 2010; Tarigopula et al., 2006). 

The performance of the energy absorbing is evaluated by plotting a force-displacement curve. The total absorbed 
energy signified by the area under force-displacement curve. The performance of thin walled tubes can also be 
characterized quantitatively by applying several parameters namely specific energy absorber (SEA), crush force 
efficiency (CFE), mean force (P mean) and peak force (P max).   

The aims of this paper are, (a) to perform compression quasi static test of circular and square aluminum alloy 
AA6063 temper T5; and (b) to validate an existing analytical model with test results. 

1.2 Analytical Model 

Alexander (Alexander, 1960) presented a rigid plastic analysis for the concertina mode of deformation. His 
model is based on the plastic work required for bending and stretching of an extensible thin cylinder. He gave the 
following expression for the mean crushing load P mean; ܲ	௠௘௔௡ = ቆ20.75ටଶோ௧ + 6.283ቇܯ଴                                 (1) 

where R is radius tube, t is thickness of tube and M0 is full plastic bending moment. 

Abramowicz and Jones (Abramowicz & Jones, 1986) conducted axial compression tests on a range of thin 
walled circular and square steel tubes. They analytically considered both axi-symmetric and non-symmetric 
mode. For the square tubes, they also developed analytical models for axis-symmetric mixed collapse type A, 
type B and extensional collapse mode. 

Wierzbicki and Bhat (Wierzbicki & Bhat, 1986) studied a moving hinge solution for axi-symmetric crushing 
tubes, where they developed new analytical model for circular tube. The solution features a stiffening phase of 
the tube resistance which follows the softening phase during the formation each buckle. 

Wierzbicki et al. (Wierzbicki, Bhat, Abramowicz, & Brodkin, 1992) carried out the analysis of an axially 
compressed circular tube deforming in progressive axi-symmetric and they assumed an eccentricity factor relate 
the inward and outward parts of the folds. Singace et al. (Elsobky & Singace, 1996; Singace, Elsobky, & Reddy, 
1995) reexamines the problem and produces a value eccentricity factor which conforms the experimental works. 
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Values of the critical angles required for the formation of the inward and outward fold s obtained from the 
analysis were substantiated by those obtain from experiments. 

Guillow et al. (Guillow et al., 2001) conducted almost 70 experimental works to expand D/t ratio over previous 
study to D/t =10-450. A chart mode classification was developed and collapse mode were observed for L/D ≤ 10. 
P mean was developed and it was found that test results for both axi-symmetric and non-symmetric modes lie on 
single curve. 

Another researchers followed another approach, instead purely analytical, they used experimental data of 
crushed tubes to develop empirical relations. Magee and Thornton (Magee, 1978) used crush test data of 
different columns of several different section geometries and developed a relationship for P mean for tubes; ܲ	௠௘௔௡ =   ଴                                   (2)ܣ߶௨ߪߟ	

where ߟ is structural effectiveness, ߪ௨ is ultimate tensile strength, ߶ is relative density, and ܣ଴ is overall 
section area defined by the outer circumference. 

For a circular tubes 2 = ߟ߶଴.଻, ߶ ݐ4	= 2ܴ⁄ , P mean becomes; 

ܲ	௠௘௔௡ = 	2 ቀସ௧ଶோቁ଴.଻ ௨ߪ ቀସ௧ଶோቁ  ଴                              (3)ܣ

Meanwhile, for square tube, 1.4 = ߟ߶଴.଼, ߶ ݐ4	= ܾ⁄ , P mean becomes; where b is side length of side.  

 ܲ	௠௘௔௡ =   ௨ܾ଴.ଶ                                    (4)ߪ଼.ଵݐ17	

2. Experimental Details 

Compression tests were conducted using Shimadzu universal testing machine with loading capacity up to 250 kN. 
Loading rate and total crushing displacement were set at 5 mm/min and total crushing of 100 mm respectively. 
This loading rate considered quasi static since the strain rate is in the range of 10-4 s-1. 

Aluminum Alloy 6063 temper with T5 was used as tested material, which was cooled from elevated temperature 
shaping process then artificially aged. Two type of tube were used namely square(S) and circular(C) tubes. Table 
1 gives dimension for both tubes. Ratio R/t for circular tube and ratio b/t for square tube was 11.99 and 23.99. 
Meanwhile for the both tubes ratio L/D was 5.33, and based on chart developed by Guillow et al. (Guillow et al., 
2001), circular tube was expected having collapsible mixed mode.  

 

Table 1. Dimension of Tubes 

Sample Length 
(mm) 

Thickness 
(mm) 

Outer 
diameter (mm)

Side length 
(mm) 

Weight 
(kg) 

C1 177.8 1.59 38.1  0.07 
C2 177.8 1.59 38.1  0.07 
C3 203.2 1.59 38.1  0.08 
C4 203.2 1.59 38.1  0.08 

S1 203.2 1.59  38.1 0.11 
S2 203.2 1.59  38.1 0.11 
S3 203.2 1.59  38.1 0.11 
S4 203.2 1.59  38.1 0.11 
S5 203.2 1.59  38.1 0.11 

 
The chemical composition and material properties for this tube are given as per Tables 2 and 3 respectively. 

 

Table 2. Chemical Composition of Tubes 

% Cu Fe Mg Mn Si Ti Zn Cr Other Al 
Min* 0.01 0.17 0.48 0.03 0.44 0.01 0.01 0.01 0.10 

The rest 
Max* 0.10 0.17 0.48 0.03 0.44 0.01 0.10 0.10 0.10 

*All in weight % 
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Table 3. Material Properties of Tubes 

Yield Stress Ultimate Tensile 
Stress 

Density Elastic Modulus ߪ଴.ଶ(MPa) ߪ௨(MPa) ߩ(kg/m3) E(GPa) 
118 152 2.71 x 103 69  

 

3. Test Results  

The test results are summarized in Table 4. The force-displacement curve for both tubes are presented in Figures 
1 and 2. Initially tubes behave elastically until force rises to maximum load (peak), but as instability develops it 
falls off rapidly until a first fold is developed. A series of fluctuations about mean force develops, the peaks and 
troughs being directly related to the form and folding at the various buckling levels. This deformation pattern is 
referred to as progressive crushing.  

Figure 3 shows comparison between square and circular tubes based on average data from samples. From Figure 
3a, average P max for circular tube is 73% more than square tube. Meanwhile average P mean for the circular tubes 
is 12% more than square tube. Energy absorbed by circular tube almost twice than the square tube (Figure 3b).  
Even specimen C1 and C2 of different length than others, result in the similiar value for P max and P mean. Thus, 
length is insignificant to the response of tubes in compression. C1 has lower energy absorbed due to global 
buckling towards final displacement. 

 

Table 4. Summary of Test Result 

Sample Pmax(kN) Energy(kNmm) P mean(kN) CFE SEA(kJ/kg)
C1 37.07 1859.43 18.59 0.50 26.56 
C2 37.69 2087.02 20.87 0.55 29.82 
C3 37.41 2124.37 21.22 0.57 26.56 
C4 37.90 2131.81 21.32 0.56 26.65 
C5 37.62 2125.40 21.25 0.57 26.57 

Average Circular 37.54 2065.61 20.65 0.55 27.23  
S1 22.94 966.76 9.67 0.42 8.79 
S2 21.15 897.40 8.97 0.42 8.16 
S3 22.61 1048.77 10.49 0.46 9.53 
S4 21.56 995.30 9.95 0.46 9.05 
S5 20.09 948.25 9.48 0.47 8.62 

Average  
Square 

21.67 971.30 9.71 0.45 8.83 
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Figure 1. Force –displacement characteristic for circular tubes. An inset shows deformation pattern of the 
circular tube (C5 sample) 

 

 
Figure 2. Force-displacement curve for square tubes. An inset shows deformation pattern of the square tube (S1 

sample) 
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(a) 

 

(b) 
Figure 3. Comparison between square and circular tubes based on average data for (a) Force –displacement and 

(b) Energy –displacement curve 
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Table 5. Comparison between P mean analytical models for circular tubes 

Analytical  Model 

(Circular Tubes) 
Equation 

P m Analytical * (kN) 

൬܏ܖܑܛܝ ો૙ = ોܝ + ો૙.૛૛ ൰ 

P m Analytical + (kN) ሺ܏ܖܑܛܝ	ો૙	 = ોܝ) 
Alexander Model 

(Alexander, 1960) 
P୫M଴ = 20.75ඨ2Rt + 6.283 9.19 10.35 

Abramovicz & Jones 

Model (Abramowicz & 

Jones, 1984a) 

P୫M଴ = 22.366ඨ2Rt + 11.766 10.35 11.65 

Abramovicz & Jones 

Model (Abramowicz & 

Jones, 1986) 

P୫M଴ = 25.230ඨ2Rt + 15.09 11.83 13.31 

Wierzbicki & Bhat 

Model (Wierzbicki & 

Bhat, 1986) 

P୫M଴ = 35.22ඨ2Rt  14.71 16.56 

Wierzbicki et al Model 

(Wierzbicki et al., 1992) 
P୫M଴ = 31.74ඨ2Rt  13.26 14.93 

Wierzbicki Model 

(Wierzbicki & 

Abramowicz, 1983) 

P୫M଴ = 62.88ඨ2Rtయ
 15.47 17.42 

Singace et al Model 

(Singace et al., 1995) 
P୫M଴ = 22.27ඨ2Rt + 5.632 9.78 11.01 

Guillow et al Model 

(Guillow et al., 2001) 

P୫M଴ = 72.3 ൬2Rt ൰଴.ଷଶ 17.04 19.19 

C. L Magee & P.H 

Thornton Model 

(Magee & P. H., 1978) 
P୫ = 2൬4t2R൰଴.଻ σ୳ ൬4t2R൰A଴ - 16.52 

 

Table 6. Comparison between P mean analytical models for square tubes 

Analytical Model (Square 

Tubes) 
Equation 

P m Analytical * (kN) 

൬܏ܖܑܛܝ ો૙ = ોܝ + ો૙.૛૛ ൰ 

P m Analytical + (kN) ሺ܏ܖܑܛܝ	ો૙	 = ોܝ) 
Abramovicz & Jones 

Model (Abramowicz & 

Jones, 1984b) 

P୫M଴ = 38.12ඨbtయ
 9.38 10.56 
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Abramovicz & Jones 

Model (Abramowicz & 

Jones, 1986) 

P୫M଴ = 52.22ඨbtయ
 12.85 14.46 

Abramovicz & Jones 

Model (Type 

A)(Abramowicz & Jones, 

1986) 

P୫M଴ = 42.92ඨbtయ + 3.17 ൬bt൰మయ+ 2.04 

12.98 14.61 

Abramovicz & Jones 

Model (Type 

B)(Abramowicz & Jones, 

1986) 

P୫M଴ = 45.90ඨbtయ + 1.75 ൬bt൰మయ+ 1.02 

12.63 14.22 

Abramovicz & Jones 

Model (Extension 

mode)(Abramowicz & 

Jones, 1986) 

P୫M଴ = 32.64ඨbt + 8.16 14.33 16.13 

C. L Magee & P.H 

Thornton Model(Magee P. 

H., 1978) 

P୫ = 	17tଵ.଼σ୳b଴.ଶ - 12.30 

 

Tables 5 and 6 shows the comparison between various calculated P mean using several analytical models for both 
tubes. Full plastic bending moment, ܯ଴ is derived from equation, 

଴ܯ  = ଵସ  ଶ                                       (5)ݐ௢ߪ

where  ߪ௢ and t refer to the flow stress and thickness of tubes respectively. Different researchers have used 
various different measures for the flow stress, ߪ௢. The author would like to use mean stress between yield stress 
and ultimate tensile strength (Equation 6), as it was proposed by Abramowicz and Jones(Abramowicz & Jones, 
1986) and to propose ultimate tensile stress as flow stress, ߪ௢(Equation 7); ߪ௢ = ఙబ.మାఙೠଶ                                        (6) 

௢ߪ  =  ௨                                         (7)ߪ
where ߪ଴.ଶ is the yield stress based on 0.2% strain and ߪ௨ is ultimate tensile stress to compare the both 
equation to calculate P mean using analytical model. In Table 5 and 6, calculated P mean using flow stress 
Equation 6 and Equation 7 are referred as Pm Analytical * and Pm Analytical +.  

Figures 4 and 5 show comparison between test results and several analytical model for circular and square tubes 
respectively. P mean for circular tubes shows a much better agreement between the test results and the model 
proposed by Guillow et al. (Guillow et al., 2001) using flow stress	ߪ௢ defined by Equation 7(Figure 4(b)). 
Meanwhile for square tubes, P mean from test results is more accurately represented by the analytical model of 
Abramowicz and Jones (Abramowicz & Jones, 1984a) using flow stress	ߪ௢ defined by Equation 6 (Figure 5(a)). 
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(a)                                                           

 
(b) 

Figure 4. Comparison data between test result and several analytical model for circular tubes, (a) Using Flow 
Stress Equation 6 and (b) Using Flow Stress Equation 7 
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(a)       

                           
(b) 

Figure 5. Comparison data between test result and several analytical model for square tubes, (a) Using Flow 
Stress Equation 6, and (b) Using Flow Stress Equation 7 

 

4. Conclusions 

Experimental quasi static test results of circular and square tubes are presented in this paper. Then, the test 
results are compared in order to verify and validate several analytical models proposed by previous researchers. 
The main conclusions from this study can be summarized as follows: 

a) Circular tube gives the best crushing performance due to P max for circular tube is 57% higher than the square 
tube. P mean for circular tube is 46% higher than the square tube. Energy absorbed by the circular tube is twice 
more than the square tube. 
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b) Comparison between analytical model and test results, shows that P mean for circular tube is closer to model 
proposed by Guillow et al. (Guillow et al., 2001) and flow stress ߪ௢ by using in Equation 7, which is ߪ௢ =  .௨ߪ

Meanwhile, P mean for square tube are closer to Abramowicz and Jones(Abramowicz & Jones, 1984a) model, 
with the flow stress is defined using in Equation 6, (ߪ௢ = ఙబ.మାఙೠଶ ).  

Further works can be considered for testing specimens at various ratio of R/t and b/t for circular and square tube 
respectively. 
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