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Abstract 
Model based on canonical correlation analysis (CCA) and group method of data handling (GMDH) are explicate 
to obtain a better flood quantile estimation at ungauged sites. CCA is used to build a canonical physiographical 
space by applying the site characteristics from gauged station. Then GMDH model is used to distinguish the 
functional relationship between flood quantiles and the physiographic variables in the CCA space. The proposed 
model is applied to 70 catchments in Peninsular Malaysia. The jackknife procedure is used to evaluate the 
performance of proposed model. Result of proposed model compared with Traditional CCA model, linear 
regression (LR) model and GMDH model. The results indicated that the proposed model CCA-GMDH deliver 
the best performance among all models in terms of prediction accuracy. 

Keywords: ungauged, group method of data handling, canonical correlation analysis 

1. Introduction 
Flood event is one of the most life-threatening and repeated type of natural disasters that take place in Peninsular 
Malaysia. Flood event contributes to a lot of damages to properties, infrastructures and even loss of people lives. 
Flood undoubtedly cannot be prevented from occurring, but human being can prepare for it. This problem makes 
a reliable estimation of flood quantiles is necessary for planning flood risk project (e.g., roads, culverts and 
dams), the safe design of the river system, and it give a closed valuation budget of flood protection project. In 
order to acquire accurate estimation of flood quantiles, recorded historical time series data of the stream flows 
required. Usually, long term historical data needed for estimation to produce a more reliable outcome compared 
to short term data and may also reduce the risk. However, it usually occurs that the historical data at target site 
not always available. Although at-site of interest may have some available data but the data are not enough to 
describe the catchment flow because of the changes in watershed characteristics such as urbanization (Pandey 
and Nguyen, 1999). The UK Flood Estimation Handbook (FEH) notes “many flood estimation problems arise at 
ungauged sites that there are no flood peak data” (Reed and Robson, 1999). 

Mamun et al. (2012) stated that the river located in Malaysia is gauged only at a strategic location, and another 
river is usually ungauged. The ungauged river could become a problem to the developer when development 
projects located at ungauged catchments. Typically some site characteristics at the ungauged sites are exist. Thus, 
regionalization is conducted to make the estimation of flood quantile at ungauged sites using physiographic 
characteristics. Regionalization technique consists of fitting a probability distribution to series of flow and then 
relating the relationship to catchment characteristics (Dawson et al., 2005). The variables t the flood quantile 
estimation includes storm characteristics (duration and intensity events), basin characteristics (slope, size, 
storage and shape characteristics of the catchment), climatic characteristics (humidity, wind and temperature 
characteristics) and geomorphologic characteristics (topology, land use patterns, vegetation and soil types that 
affect the infiltration) (Jain and Kumar 2007). In relating flood quantile at site of interest to catchment 
characteristics a power form equations are mostly used (Pandey and Nguyen, 1999; Seckin, 2011; Mamun, 
2012). 

Canonical correlation analysis (CCA) is also frequently used approach to defining hydrological neighborhoods 
(Ouarda et al., 2000, 2001). Cavadias (1990) introduced CCA to flood quantile estimation where region formed 
on the basis of visual judgments of clustering patterns. Shu and Ourda (2007) using artificial neural network in 
canonical correlation analysis produce a better estimation of flood quantile compare used only artificial neural 
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network to estimate flood quantile in Quebec, Canada. Ouarda et al. (2000) applied the CCA approach to 
estimating extreme flood quantiles in Quebec, Canada. On the following year Ouarda et al. (2001) proposed the 
additional improvement to the method and detailed algorithm to delineate homogenous regions for gauged and 
ungauged sites using CCA. 

At ungauged sites linear regression (LR) model is always worthy of depended on estimates of flow statistics or 
flood quantiles (Shu & Ouarda, 2008; Pandey & Nguyen, 1999). Mamun et al. (2012) used linear regression of 
various return periods in ten flood regions in Peninsular Malaysia. Linear regression usually integrated with 
CCA to provide quintile estimation especially at ungauged sites (Shu & Ouarda, 2007). There are many models 
whereby the relationship between catchments streamflow and catchments characteristics can be expressed. 
However, in practice the most commonly used relationship between the flood quantiles and catchment 
characteristics is the power form function (Thomas and Benson, 1970). The power function has the following 
form: 

1 2
0 1 1 2 0

n
TQ A A Aαα αα ε=                              (1) 

where 1 2, , , nα α α  are the model parameters, 1 2, ,..., nA A A  are the site characteristics, oε is the multiplicative 

error term, n is the number of sites characteristics and TO  is the flood quantile of T-year return period. The 

power form model on Eq. 1 linearized by a logarithmic transformation whereas the parameters of the linearized 

model can be estimated by a linear regression model. McCuen et al. (1990) stated that the solution obtained by 

linear regression methods theoretically unbiased in the logarithmic domain but biased in real flood flow area.  
As an alternative to standard nonlinear regression methods, group method of data handling (GMDH) by 
Badyalina et al. (2014) for flood quantile estimation. The GMDH algorithm was first presented by a Ukrainian 
scientist Ivakhnenko and his colleagues in 1968 to produce mathematical models of complex systems by 
handling data samples of observations (Ivakhnenko and Ivakhnenko, 1974). The GMDH method was initially 
formulated to resolve higher order regression polynomials specifically for solving modeling and classification 
problems. The GMDH model was developed by Ivakhnenko to identify nonlinear relationship between inputs 
and output variables. Oh and Pedryz (2002) stated that GMDH performs the self-organizing control of data 
mining process, is a high efficiency and intelligible algorithm for constructing optimization model by objective 
approach from the original input variables. 

In the present paper, regional flood quantile estimation methods based on CCA and GMDH model are proposed. 
CCA is used to define a transformed physiographical space. A GMDH then used to establish the nonlinear 
relationships between the site physiographical space and hydrological variables is estimated. A comparison study 
is carried out between the proposed model and several other model using data from the province of Peninsular 
Malaysia.  

2. Methodology 
2.1 Group Method of Data Handling 

Group Method of Data Handling (GMDH) model was introduced by Ivakhnenko on 1970 to solve complex 
non-linear multidimensional that has short data series (Ivakhnenko 1970). The GMDH algorithm that describes 
the relationship between input and output signal can be represented by Volterra series (Ivakhnenko 1970) in the 
form of: 

0
1 1 1 1 1 1

...
n n n n n n

i i ij i j ijk i j k
i i j i j k

y v c x v x x v x x x
= = = = = =

= + + + +          (2) 

Eq. 2 known as Kolmogorov-Gabor polynomial. From Eq. 2, 1 2( , ,..., )nX x x x is referring to input variable vector, 

n  is the number of inputs and 1 2( , ,..., )nV v v v  is a vector of the coefficient weight. In the GMDH algorithm, Eq. 

2 is called the complete description of the nonlinear system. However, most application only used second order 

polynomial called partial descriptions (PD) of the nonlinear system that can be expressed by a system of transfer 

function consisting of only two variables (Srinivasan 2008; Najafzadeh & Barani 2011). The PD is in the form 

of: 
 2 2

0 1 2 3 4 5ˆ i j i j i jy v v x v x v x x v x v x= + + + + +           (3) 

Eq. 3 as partial description (PD) provides the mathematical relation between the input and output variable. 
Linear regressions mostly used in GMDH to obtain the weight coefficients for the models (Ivakhnenko 1970; 
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Zadeh et. al 2002). The data set that consists of input and output are divided into two subsets that are the 
modeling and forecasting based on jackknife procedure. The input variable { }ijX x= are paired using partial 
description in Eq. 3 in modeling data set. Then a linear regression used in Eq. 3 is to obtain the vector of 
coefficients. 

 Gv = Y                    (4) 

Where v  is the vector of coefficient of the partial description in Eq. 3. 

 0 1 2 3 4 5{ , , , , , }v v v v v v=v            (5) 

and  

   

                (6) 

is a vector of output from training data set. 

 

             

(7) 

 

 

Then, the best-estimated coefficients of partial description in Eq. 4 were obtained in the form of: 
T -1 Tv = (G G) G Y                  (8) 

Therefore in each layer the total number of PD generated, and the RMSE are as follow: 

                        (9) 

 

 

     [ ]1,2, ,k U∈             (10) 

  

Where n  is the number of input in each layer. The vector coefficient of each PD is determined using linear 
regression then forming the quadratic equation which approximates the output ŷ . After completing the previous 
process, the algorithm has constructed U number of new inputs variable, but only one from U  is chosen for 
the new input of GMDH based on RMSE value. This method for identification of GMDH-type networks is 
called as error-driven approach (Zadeh et. al. 2002). After determining the new input, the whole GMDH process 
is repeated again. If 1k kRMSE RMSE −≤ , set new input variables and repeat the GMDH process, otherwise if 
RMSE shows an improvement the process is stopped and use the results from the previous minimum value of 
RMSE. 

2.2 Canonical Correlation Analysis (Shu & Ouarda, 2007) 

Canonical correlation analysis (CCA) is a path explaining the linear relationship between two sets of variables. 
Consider X  and Y  are two random variables, CCA computes two sets of basis vectors (canonical variables), 
one for X  and the other for Y , such that the correlations between the projections of the variables onto these 
basis vectors are mutually maximized (Muirhead, 1982). The maximum number of canonical variable pairs is 
equal to or less than the smallest dimensionality of the two variables. Let W  and V  be linear combinations of 
X  and Y , respectively. 

'W Xα=                   (11) 

 
'V Yβ=                     (12) 

Let be a covariance matrix of variable and , defined as 

          (13) 
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The correlation between and can be calculated as 

                                                                  (14)

 

The goal of CCA is to find the vectors of α  and β  maximizing ρ  subject to the constraint that W  and 
V  must have unit variances. Once the first pair of canonical variables is obtained, other pairs of canonical 
variables can be obtained in the uncorrelated directions to the previous ones by maximizing Eq. 14 subject to the 
constraint of unit variance. CCA was recently used by Chokmani and Ouarda (2004) to construct a transformed 
space defined by the physiographical and meteorological characteristics. The hydrological variables (flood 
quantiles in our case) are usually not continuous in the geographical space. However, they are constant in the 
canonical physiographical space (Chokmani and Ouarda, 2004). This characteristic is crucial for flood estimation 
at ungauged sites. Because the physiographic variables and the meteorological variables are available at the 
ungauged sites, one can easily locate an ungauged site in the physiographical space constructed by these 
variables. For more detailed information regarding CCA, the readers are referred to Ouarda et al. (2001). 

2.3 Integrating CCA and GMDH for Regional Flood Frequency Analysis at Ungauged Sites 

Usually at ungauged sites, historical flood data are not available and became a problem if directly used to 
estimate the hydrological variables such as flood quantiles. Contrary, building a functional relationship between 
the hydrological variables and the physiographical variables make the estimation of flood quantile is possible at 
ungauged site. Estimation of various flood quantile required model to used data from gauged station that around 
ungauged site. In the proposed model shown in this paper, the original physiographical variables are converted 
into canonical space. Then the expected variables are used as input variables for GMDH model to estimate the 
particular flood quantile. Suppose a set of catchments characteristics, X  and hydrological variables, Y  are 
related with each gauged station. Applying CCA, canonical variables W and V  can get as a linear 
combination of W  and V , respectively. The coefficients used for the combination computed so that the 
correlation between the variables W  and V  is maximized. Knowing the combination coefficients, the 
physiographical variable uX  for an ungauged site can be easily projected into the CCA space to obtain the 
physiographical variable in the CCA space. The goal of the GMDH model is to approximate the functional 
relationship between the canonical variables and the hydrologic variables Y which act as an input and output of 
a GMDH, respectively. The canonical variables V  not used in the GMDH training and estimation phase. To 
achieve this goal, the GMDH must be trained using the samples from the gauged sites in the study area.  

2.4 Evaluation Criteria 

The performance of each model is evaluated with the following error indices which are the mean absolute error 
(MAE), root mean square error (RMSE) and Nash-Sutcliffe coefficient of efficiency (CE) and correlation 
coefficient. The definitions of MAE, RMSE, CE and BIASr, are provided in Eq. 15- Eq. 18, respectively.  
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where  is the observed flows,  is the predicted flows,  is the mean of the observed flows, 
 is the mean of the predicted flows and  is the number of flow series that have been modeled.. The 

coefficient of efficiency (CE) provides an indication of how good a model is at predicting values away from the 
mean. CE ranges from 

 
in the worst case to 1 (perfect fit). The efficiency of lower than zero indicates that 

the mean value of the observed flow would have been a better predictor than the model. Variance and the 
multiplied standard deviations of observed and predicted values.  

3. Case Study 
The hydrometric station network of Peninsular Malaysia is chosen as the case study of this work. According to 
the following criteria, 70 hydrometric stations located in Peninsular Malaysia are selected. 

1. To get reliable at-site estimation, a historical flood record of 15 years or longer are needed. 

2. The gauged river should present natural flow regime. 

3. The selected stations are located within latitude 1° − 5°  and longitude of 100° − 104°  . The areas 
of these catchments are ranging between 16.3 km2 to 19,000 km2. 

The historical data of 70 catchments in the province of Peninsular Malaysia were implemented in this study. 
They are located within latitude 1° − 5°  and longitude of 100° − 104° . The areas of these catchments 
are ranging between 16.3 km2 to 19,000 km2. The locations of these catchments are shown in Fig. 1. Three types 
of data, physiographical, meteorological and hydrological are used in this study. The variables selected in this 
study on the basis of previous study by Seckin (2011) and by Shu and Ouarda (2007). Four physiographical 
variables are the catchment area, elevation, mean river slope and longest drainage path. The meteorological 
variable is mean annual total rainfall. The summary statistics of these variables are presented in Table 1. The 
descriptive statistics include minimum, maximum, mean and standard deviation for each variable. The variables 
shown in the table are catchment area (AREA), elevation (ELV), longest drainage path (LDP), mean river slope 
CCA-GMDH(SLP), annual mean total rainfall (AMR), magnitude of flood for return period T=10 year , 
magnitude of flood for return period T=50 year and magnitude of flood for return period T=100 year 

. The return period were estimated using selected distribution at each station. There are five distribution 
used in this study that are generalized extreme value distribution (GEV), generalized logistic distribution (GLO), 
generalized pareto distribution (GPA), pearson 3 distribution (P3) and three parameter lognormal (LN3). The 
flow data at each station were fitted using these five distributions. Then the best fitted distribution represent the 
station flow pattern used to estimate the flood quantile.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map showing location of stream flow stations used in the study 
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Table 1. Descriptive statistics of hydrologic, physiographical and meteorological variables 

Variables  Min Mean Max STD 
AREA [km2]  30 1787.05 19000 3676.28 

ELV [m]  4 99.49 1450 249.99 
LDP [m]  3800 38457.97 280000 59553.88 
SLP [%]  0.01 0.40 2.56 0.50 

AMR [mm]  314.30 2099.75 4678.70 717.26 
 [m3/s]  12.87 716.15 7256.76 1451.10 
 [m3/s]  29.54 1043.45 10089.80 2029.01 
 [m3/s]  43.82 1194.17 11218.89 2270.77 

 

4. Discussion 
There is one model proposed in this paper and three models used for comparison purpose are applied to the study 
area database. The proposed model is a combination between group method of data handling and canonical 
correlation analysis (CCA-GMDH). To simulate the ungauged site, a jackknife procedure is implemented. In 
jackknife procedure, one site is removed from data and model parameters are estimated using the data from 
remaining site. The estimated parameters are in turn used to predict quantile for the site not used in the model 
development. The process is repeated until all stations are removed at least once. The input variables for all 
models are catchment area, elevation, longest drainage path, river slope and annual maximum mean total rainfall. 
The results obtained using jackknife validation procedures are presented in Table 2. For each cell of Table 2, 
bold font denotes the best performing approach. A model can be claimed to produce a perfect estimation if the 

criterion equal to 1. The model can be considered acceptable if the criterion is greater than 
0.8. The four models, ranked according to their performance in the criterion from highest to lowest in 
estimating the 10, 50 and 100-year flood quantiles are listed as follows: GMDH-CCA, GMDH, Tradition-CCA 
and LR. The value obtained from both CCA-GMDH and GMDH model in estimating the three 
particular quantiles are all above 0.8. This indicates that the GMDH models in the CCA space can provide 
satisfactory estimates.  

 

Table 2. Jackknife validation results 

 Hydrological  
Variables LR

Traditional
CCA GMDH

 
CCA-GMDH 

CE q10 0.6610 0.6733 0.7832 0.9210 
 q50 0.6332 0.6455 0.8839 0.9406 
 q100 0.5884 0.6004 0.8821 0.9565 

 q10 841.8803 826.4962 673.3238 406.4181 
 q50 1010.2217 993.1600 568.4410 406.4128 
 q100 1242.7308 1224.5268 665.0904 403.8808 

MAE q10 406.8528 399.7822 235.8594 174.9786 
 q50 496.8859 488.5106 202.7040 165.4816 
 q100 618.1738 608.1246 289.2933 157.0950 

 q10 -0.3383 -0.3331 -0.7849 -0.0973 
 q50 -0.3425 -0.3366 -0.1159 -0.0472 
 q100 -0.3549 -0.3477 0.1672 -0.0393 

 

 indices provide assessment of prediction accuracy in absolute and relative scale, respectively. The 
CCA-GMDH model has the best performance among all the models according to indices. Meanwhile 
for MAE indices, CCA-GMDH outperformed other models when estimating the 10, 50 and years flood quantile. 
The result obtained showed that CCA-based GMDH model showed significant improvement compared to 
GMDH model applied in original physiographical space. The proposed model lead to a better performance in the 
estimation because the combination both linear and nonlinear method. Other than that, after applying GMDH on 
CCA physiographical space, GMDH model chooses the best input to obtain a better estimation. The 
indices provide indication whether model tends to overestimate or underestimate. An analysis based on the 

 index is used, both CCA-GMDH model and GMDH model underestimates flood quantiles. Estimation 
obtained from CCA-GMDH has the lowest bias. Overall, the CCA-GMDH model leads to a much better 
performance with CE, RMSE and MAE indices compare than GMDH, Traditional CCA and LR model. These 
indicate that applying GMDH model in the physiographical space can significantly improve the performance of 
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GMDH models than in original physiographical space. Chokmani and Ouarda (2004) concluded that the CCA 
technique is more capable of characterizing the physiographical space for conducting flood quantile estimation. 
The research result of this paper is consistent with their conclusions. The GMDH model outperforms both in the 
original space and the CCA physiographical space according to most performance indices. Thus, the 
CCA-GMDH model is better than traditional LR model. 

5. Conclusions 
The methodology of integrating the CCA technique and GMDH for flood quantile estimations at ungauged sites 
presented in this paper. CCA is used to project the site characteristics into the canonical physiographical space. 
GMDH model then used to approximate the functional relationship between flood quantiles and the projected 
physiographic variables. Three various return period in this study were used to see the capability of the model to 
estimate for short term and long term. CCA-GMDH model was compared to three other models that are LR, 
Traditional CCA and GMDH models. The result shows CCA-GMDH outperformed the comparison model in 
relative accuracy in estimation of flood quantile.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Jackknife estimation using the CCA-GMDH model 
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