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Abstract 
We investigate a new approach to the construction of vector Lyapunov functions. An approach to the construction 
of Lyapunov functions as vector functions is developed based on a geometrical interpretation of the second 
method of Lyapunov. The negative of the gradient is determined from the components of the time derivative of 
the state vector (i.e., the right-hand side of the state equation). The region of stability of a closed-loop linear, 
stationary system with uncertain parameters is governed by inequalities in the matrix elements of the closed-loop 
system. This study developed a method for analysing the robust stability of SISO and MIMO linear systems in 
canonical forms. 
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1. Introduction 
Currently, control problems are characterised by increasingly complex, high-order systems, requirements for high 
efficiency and stability, numerous uncertainties and incomplete information. Robust stability can be viewed as one 
of the outstanding issues in control theory, but it is also of a great practical interest.  Control system design is one 
of the main tasks in automation in all branches of industry including manufacturing, energy, electronics, chemicals, 
medical devices, metals, textiles, transportation, robotics, aviation, space systems, and high-precision 
military/defence systems. In these systems, uncertainty can occur because of the presence of uncontrolled 
disturbances acting on the system (Kurzhansky, 1978) or because the true values of the parameters of the system 
are unknown, either initially or as the system changes over time (Kurzhansky, 1978; Polyak & Shcherbakov, 2002; 
Bacciotti & Rosier, 2001). 

The main goal in control system design is, in some sense, to provide the best protection against uncertainty in the 
knowledge of the system. The ability of a control system to maintain stability in the presence of parametric or 
nonparametric uncertainties is known as system robustness. In general, robust stability analysis consists of 
determining the ranges of values of uncertain parameters for which the closed-loop system remains stable 
(Polyak & Shcherbakov, 2002). A considerable volume of work has been devoted to the development of robust 
stability theory.  

In this study, we investigate a new approach to the construction of vector Lyapunov functions (Karafyllis & Tsinias, 
2003). Vector Lyapunov functions are constructed using a geometrical interpretation of the second method of 
Lyapunov presented in (Barbashin, 2004; Malkin, 1966). The components of the time derivative of the state vector 
(i.e., the right-hand side of the state equation) are used to form the negative of the gradient. The robust stability of 
the system is ensured by choosing the controller parameters so that the scalar product of the gradient vector and 
the time derivative of the state vector are a negative function (Dorato & Rama, 1990, Antsaklis & Michel, 1997). 
Stability conditions can be obtained from the positivity of the Lyapunov function in the form of a system of 
inequalities involving the uncertain parameters of the system (i.e., plant) and the parameters (i.e., gains) of the 
controller. 

We investigate the robust stability of single-input, single-output (SISO) and multi-input, multi-output (MIMO) 
linear, stationary dynamic systems in canonical form. 

In the study of stability, the state equation is defined in terms of perturbations Δx about a nominal state; i.e., the 
state vector x(t) is defined as the difference between the perturbed state X(t) and unperturbed state 
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XS(t)x(t)=Δx(t)=X(t)-XS(t) 

This difference is called a perturbation. Therefore, the origin corresponds to a predetermined condition of the 
system, the unperturbed state XS(t). Hence, the right-hand side of the state equation expresses the rates of the 
perturbations (deviations) of x(t), and we can assume that the vector of perturbation rates for a stable system is 
directed toward the origin. 

Using a geometric interpretation of the second method of Lyapunov, determining stability is reduced (Barbashin, 
1967, Karafyllis, 2004, Malkin, 1966, Dorato & Rama, 1990) to the construction of a family of closed surfaces 
surrounding the origin with the property that the integral curves corresponding to the solutions of the state 
equation (with respect to perturbations), i.e., the trajectories of the system, cross these surfaces from the exterior 
to the interior, where the interior contains the origin. The unperturbed condition is stable if it is possible to 
construct such families of surfaces. 

If the total time derivative of the Lyapunov function is negative and the rate vector is directed toward the origin, 
then each integral curve emanating from a sufficiently small neighbourhood of the origin will necessarily cross 
each of the surfaces from the exterior to the interior because the Lyapunov function monotonically decreases. In 
this case, the integral curves approach the origin, so the unperturbed condition is asymptotically stable. 

The remainder of this paper is organised as follows. In section 2, we introduce the basic equations of the model and 
their expanded form and review the Lyapunov function, its geometric interpretation, the gradient vector 
components and the super-stability condition. In section 3, we consider the existence of stability, robust stability, 
and super-stability of the nominal system and define the condition of robust stability. In Section 4, we present the 
results of simulations with a practical example.  

2. Single-Input, Single-Output Systems 
We now consider a system with one input and one output (Beisenbi & Uskenbayeva, 2014 a; Callier & Desoer, 
1991; Zhou, Doyle & Clover, 1995; Narendra, Wang & Chen, 2014).  

Let the open-loop system be described by the equation 

    
 

(1) 

where 

   

The state feedback control law is given by the scalar function 

           (2) 

where kT=||k1, k2,…, kn ||  (dimensions 1×n). Then, system (1) in explicit form can be represented as 

         (3) 

We apply Lyapunov’s direct method (Polyak & Shcherbakov, 2002) to determine the stability of the system in (3): 

for the system to be asymptotically stable, it is necessary and sufficient that there exists a positive Lyapunov 

function V(x) such that the derivative with respect to time along the solution of the state equation (3) is negative; 

i.e., The time derivative of the Lyapunov function in (4) with regard to the state equation (3) is given by the 

scalar product of the gradient vector  and the state rate vector .  To determine the stability of a 
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system (Kurzhansky, 1978; Malkin, 1966), the nominal, or unperturbed, state must be chosen. 
The equations of system (1) or (3) are always formed in terms of deviations ∆ from a steady state XS(x=Δx=X-XS). 

Applying a geometric interpretation of Lyapunov’s theorem (Malkin, 1966; Dorato & Rama, 1990), we define 

negative gradients of the candidate Lyapunov function as 

 (4)

 

Then, we obtain the complete time derivative of the candidate vector Lyapunov function as

 

   (5) 

From (5), it follows that the complete time derivative of a candidate vector Lyapunov function will always be a 
negative function. 

The complete time derivative of the Lyapunov function  can be expressed in 
scalar form as 

      (6) 

From (4), we can obtain a candidate vector Lyapunov function (Beisenbi & Uskenbayeva, 2014 b): 

 

 

… 

 

 

The entries of the candidate vector Lyapunov function  are constructed from the gradient vector. 
The Lyapunov function can be expressed in scalar form as  

  
(7) 

Given that the function in (7) must be positive and the quadratic forms in (5) are negative, we obtain the 
following conditions for the stability of the system in (3): 
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     (8) 

In control systems, a precise mathematical formulation is often inaccessible. In reality, systems inevitably 
contain uncertainty. For a system to satisfy the constraints (8) in the presence of uncertainties in the parameters, 
we can determine a robust stability radius 

 

where the nominal system matrix  is super-stable,  are the entries of the closed-loop 

system matrix,  is the nominal system matrix (1),  is the matrix of uncertainties, 

the matrix  scales changes in the entries  of matrix G, and  is the uncertainty range.  

We define the system using the negative of the gradient of a candidate function, i.e., , which was 

obtained previously in the form of a Lyapunov function:  

              (9) 

super-stability of nominal system (9) is defined using (4). 

     (10) 

Suppose that the condition of super-stability is preserved for all matrices of the family 
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2.1 Example 

As an example, we analyse a third-order system, the block diagram of which is shown in Fig. 1. 

 

Figure 1. System block diagram for example 1 

 

The transfer function for the open-loop system has the form 

 

where T1, T2 and T3 are time constants and  and  are gains. 

Letting , we obtain the transfer function for the closed-loop system  
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Using the method described, we construct a Lyapunov function for which the complete time derivative is 

 

The Lyapunov function is therefore  

 

The conditions for system stability are reduced to the form 

; 

; 

 

2.1.1 Stability Limits 

We can define the following stability limits:   

1. The aperiodic stability limit (zero root s=0), which is given by 
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      (11) 

and a state feedback controller  

      (12) 

where 

 

 
Equation (11) can be expanded as 

   

(13) 

Let the matrix G = A-BK represent the closed-loop system. Expressing system (13) in matrix-vector form, we 
can write 
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  (14) 

A Lyapunov function  is defined as a vector , and the gradient of the vector 

Lyapunov function can be written as 

  (15) 

The time derivatives of the components of the vector Lyapunov function can be obtained from the state equation 

(13) or (14) using the scalar product of the components of the gradient of the vector Lyapunov function and the 

components of the state rate vector , i.e., 

 (16) 

The time derivatives of the elements of the vector Lyapunov function  are given in (16). From the 

geometrical interpretation of Lyapunov’s theorem, these functions will be negative; i.e., the conditions for 
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Using the components of the gradient vector, we construct the elements of the vector Lyapunov function: 
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             (17) 

The positiveness of the vector Lyapunov function can be expressed as 

             (18) 

We will consider the radius of robust stability of the vector Lyapunov function components. For this purpose, we 
can address parametric families of coefficients of the vector Lyapunov function components in the form 
(Pupkova & Egunova, 2004) 
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In particular, if  (in which case the scales of all of the coefficients of the components of the Lyapunov 

function are identical), then 

 
Thus, the stability radius of the family of positive functions is equal to the smallest value among the coefficients 

of the vector Lyapunov function. 
4. System in Block-Diagonal Form 
Assume a system described by the equations (Zhou, Doyle & Clover, 1995; Ma, Lu, Chen W. & Chen Y., 2014). 
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   (23) 

     (24) 

and where  are real, distinct roots, λj are real, repeated roots (  roots with the same value), λj  = αj 

± jβj are complex roots of matrix A, and it follows that  

We show that the designated structure (21) allows for the analysis of separate control terms through the 

representation of the system, with (22), (23) and (24) corresponding to the block diagonal matrix  

For this purpose, we express (19) as 
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with the matrices defined in (22) – (24). We now consider the robust stability of the systems in (27) and (28) 
separately using the proposed method of constructing Lyapunov functions.  

For simplicity, we assume that 
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For the gradient of the candidate Lyapunov function , we obtain 

 

   
The time derivative of the Lyapunov function is 

 
which will be negative. The Lyapunov function has the form  

 

The Lyapunov function will be positive if the following inequalities are satisfied: 
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… 

. 

The time derivatives are all negative and meet the condition for asymptotic stability. The candidate vector 
Lyapunov function is  

 

 

... 

 . 

For system (33), the conditions for the Lyapunov function to be positive are 

   (37) 
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,                       (38) 

The conditions in (38) also ensure that the roots   of the closed-loop system 

matrix are negative. It is possible to determine the radius of robust stability if necessary. 
For the linear closed-loop system to be stable, the eigenvalues of the system matrix must have negative real parts. 
The preceding derivation guarantees the stability of the system (Pupkova & Egunova, 2004). 

5. Conclusion 
Research in recent years has shown that the method of Lyapunov functions can be successfully used to analyse 
the robust stability of linear and nonlinear control systems. Widespread application of this method is constrained 
by the lack of a general method for selecting or constructing Lyapunov functions and difficulties with their 
algorithmic representation. An inappropriate choice of a Lyapunov function or the inability to construct one does 
not indicate instability of the system, only that a proper Lyapunov function has not been found. 

An analysis of the robust stability of systems is provided by the new approach, which is derived from a 
geometric interpretation of the asymptotic stability theorem of Lyapunov. A Lyapunov function is constructed in 
the form of a vector, and the negative of the gradient is found using the components of the time derivative of the 
state vector (the right-hand side of the state equation). In this case, the time derivative of the Lyapunov function, 
which is given by the scalar product of the gradient vector and the time derivative of the state vector, is always a 
negative function. The region of robust stability of the closed-loop system is defined by the conditions for which 
the constructed Lyapunov function is positive. 

The proposed approach to the construction of Lyapunov functions allows for an evaluation of the region of 
robust stability in the form of simple inequalities in the uncertain parameters of the controlled system. This study 
developed a method for analysing the robust stability of SISO and MIMO linear systems in canonical forms. The 
method ensures the stability of the system; i.e., the real parts of the eigenvalues of the closed-loop system are all 
negative. The efficiency and applicability of the proposed approach are evident. 
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