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Abstract 
Full-metal vibroinsulators with circular elements are widely spread and effectively reduce a harmful impact of 
vibration in mechanical systems. However, in a contemporary literature an issue of a regulation of that kind of 
vibroinsulators and their study, considering non-linearity of the characteristics, is addressed insufficiently. In the 
presented study by a joint implementation of Mohr's method and finite element method the method of a 
calculation of loading characteristics of adjustable full-metal vibroinsulators with elastic elements in the form of 
an ellipse and a system of two ellipses was developed. Broad (in a few hundreds of times) capabilities to regulate 
their rigidity characteristics were demonstrated. The presence of zone of quasi-zero rigidity is detected. The 
method allows to accurately determine parameters of a vibroinsulator, which increases quality of final products. 

Keywords: full-metal adjustable vibroinsulator, static characteristic, nonlinear elasticity theory, elastically 
damping element, elastic elliptical ring, adjustable rigidity, deformation of cable rings 

1. Introduction 
Modern full-metal vibroinsulators belong to devices that sustain significant strains during their operation, which 
are commensurable with a size of elastic elements (Nurkan, et al., 2006, Ao, et al., 2005, Ulanov, et al., 2009). In 
those circumstances there is a substantially non-linear dependence of large displacements from external forces, 
although a material of elastic elements of vibroinsulator behaves elastically because of small strains (Ulanov and 
Ponomarev, 2009, Popp, et al., 2003). Therefore, linear theory of elastic rods bending gives a great inaccuracy in 
a case of vibroinsulator's design.  

A large number of vibroinsulator's structural arrangements made from MR (metal rubber) material, metal cables, 
packs of tapes with elastic elements contours in them in a form of arcs of circles (Ao, et al. 2006, Belоusоv, et al., 
2009, Jiang, et al., 2008). Elastic elements in the specified vibroinsulators are flexible rings or parts of rings with 
friction distributed within their volume (Pоnоmаrev, 2003). A complete theory for a calculation of flexible 
multi-layered elements doesn't exist until now. However, a calculation of characteristics of such elements, not 
considering distributed friction, were conducted by distinguished scientists of 19th and 20th centuries: J. 
Boussinesq, H. Lamb, A. Foppl, R. Mayer, S. Venant, S.P. Tymoshenko, E.P. Popov and others. (Ponomarev, 
2003, Popov, 1986). 

E.P. Popov established, that in a case of flexible ring's deformation by two forces, directed along the diameter 
toward each other, its characteristic is "soft"; in a case of a deformation by two diverging forces, it is "hard" 
(Popov, 1986). 

Many structural designers of cable vibroinsulators made attempts to compensate a nonlinearity of loading 
characteristic of vibroinsulator with circular elements by entering additional joints and limiters (Mihir, 2011, 
Barry, et al., 2014, Pоnоmаrev, 2003).  

In the present study an attempt is made to develop a method for a design of vibroinsulators with circular elastic 
elements by entering additional elastic elements, which are working in opposite phase with other elements: when 
main circular elements are loaded by converging forces, additional elements are loaded by divergent loads and 
vice versa. Diagram of such structure is presented in Figure 1. 

By correctly selecting a ratio of ring's rigidities, linearity of characteristics can be achieved in a working range. 
In addition, discussed vibroinsulator possesses a rich set of features that can be used to adjust and control loading 
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characteristics of rings by altering length of a clamp, which are linking rings together (Yurddаs, et al., 2012, 
Ulаnоv and Pоnоmаrev, 2009). A change of clamps length an initial center line of ring, which is circle. The ring 
becomes ellipse, and a ratio of rigidities is changing. 

For a calculation of two ellipse system, it is necessary to know loading characteristics of a single ellipse, which 
are substantially different from those of rings.  

               

а)                                             b) 
Figure 1. Scheme of a vibroinsulator which consists of two rings 

a) General scheme, where L1, L2 – length of elastic elements; R1, R2 – radius of elastic elements before bracing; 
δ1, δ2 [delta] – strain of elastic elements with bracing; Δ0 [delta] – distance between elastic elements before 
bracing; Δ [delta] – bracing length; b) Scheme of EDE (elastic damping element) shape’s control, provided by 
changing length of a clamp 
 
2. Materials and Methods 

Vibroinsulator presented in Figure 2, operates as follows. Under a vibration load coming from a base or vibrating 
object, rings of EDE (elastic damping element) are becoming strained, compensating an action of applied loads 
and dissipating their energy. A regulation of EDE rigidity is carried out by a rotation a threaded rod leading to a 
change in a shape of internal and external EDE, due to a change of clamps length. 

The presented vibroinsulator provides a desired uniformity of rigidity's values and resonance frequencies in a 
direction of main mutually orthogonal axes. Structural arrangement of EDE allows to adjust elastic 
characteristics of components in a wide range. 

According to the studies, loading characteristics, if they are created in a linear approach, in a case of large strains, 
which is typical for elastic elements of vibroinsulator, give discrepancies with a magnitude of several times. 
Therefore, although a diagram of loading characteristics can be obtained in a linear form, rigidity must be 
searched for only with a consideration of non-linearity of strain, that is, depending on geometry of an ellipse. 

 
Figure 2. A version of vibroinsulator with EDE in a form of a set of rings 

 
Introducing main designations: P – an external force, [N]; δim [delta] – strain of an ellipse, [m], where i – a case 
of loading, m – a semiaxis of an ellipse; and – a big semiaxis of an ellipse, [m]; b – a small semiaxis of an ellipse, 
[m]; k m – coefficient of bending moment (appears in a case of a disclosure of static uncertainty), where m – a 
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semiaxis of an ellipse.  

In contrast to a ring, in a case of an ellipse it is required to consider two specific cases of loading: 

1. When force P acts along a semiaxis; 

2. When force P acts along b semiaxis. 

At the same time, the condition of a>b is always satisfied. For each case it is necessary to know strain in a 
direction of a force and strain in a perpendicular direction. Thus, for a solution of the problem it is enough to find 
four equations of loading characteristics of an ellipse for four combinations of forces directions and strains (in 
following, in order to save a space in the paper, introducing designations of P||a type, which means that an 
external force is collinear with a big semiaxis of an ellipse, P||b – an external force is a collinear with small 
semiaxis of an ellipse, y||a and y||b – the same for strain's directions). 

Considering the case, when a force is applied and strain occurs along an ellipse's big semiaxis a (see Figure 3). 

That system is statically indeterminable. Using already known method in order to disclose static 
indeterminateness.  

A calculated, statically determinable system for that case is presented in figure 3. An equation of M moment, 
arising from disclosure of a static uncertainty, can be expressed in a following way: 

,aM k Pa=   or  ,bM k Pb=                         (1) 

depending on the direction of action of the force P, where values of coefficient k a or k b for different ratios of 
semiaxes a and b for convenience are compiled in table 1. 

Loading characteristics of the discussed system can be determined using Mohr's method. 

2
10

1
PM M dS

E J

π

δ = ⋅ ⋅ ⋅
⋅  .                            (2) 

 

Figure 3. The first case of ellipse P||a strain 

 

Table 1. Values of moment's coefficients for an ellipse 

a/b 1.0 1.2 1.4 1.6 1.7

ka 0.3183 0.2733 0.2400 0.2141 0.2032
kb 0.3183 0.3087 0.301 0.2946 0.2918

a/b 1.8 2.0 2.2 2.4 2.5
ka 0.1934 0.1764 0.1622 0.1501 0.1447
kb 0.2893 0.2849 0.2812 0.2781 0.2767

a/b 2.7 3.2 3.7 4.5 5.0
ka 0.1350 0.1155 0.1009 0.08391 0.07588
kb 0.2742 0.2693 0.2656 0.2616 0.2597

a/b 5.5 6.5 7.5 9.0 10
ka 0.06923 0.05887 0.05119 0.04279 0.03857
kb 0.2582 0.2559 0.2542 0.2526 0.2517
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In order to solve that integral, it is necessary to know functions of bending moments along the length of a section. 
Expressing the equation for resulting bending moment MP from an external force P and the equation for a 
moment of a single force М1 in a direction of strain. 

1

sin ,
2

sin .

P a

Pb
M k Pa t

M b t

= − ⋅

= ⋅
                       (3) 

After integration and some mathematical operations, an expression for a determination of loading characteristics 
is obtained 

1

1

a EJ
P

abK

δ
= .                                (4) 

where К1 – coefficient of form for the case 1, when an axis of displacements is collinear with an external force P, 
which can be determine using the equation  

( ) ( ) ( ) ( )( )
( )

2 2
1 2

2

1 1
3

arcsin
1a

b
K e E e e F e

e

e
k a e

e
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 
− − + 

 

                  (5) 

It is established, that for all four cases of strain of an ellipse a single formula for a determination of load 
characteristics can be used 

j

j

EJ
P

V

δ ⋅
= ,                                     (6) 

where j – cases of strain, discussed above; Vj – coefficient, determined from (7). 
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2

1 1 2
3

2 2 3
2

2 2 4

a a

b b

b b

a a
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− =
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− =

                            (7) 

In this case a1δ [delta] the strain along the semiaxis а, b1δ [delta] the strain along the semiaxis b, when the 
force P acting along the semiaxis а. b2δ [delta] the strain along the semiaxis b, a2δ [delta] - the strain along the 
semiaxis a, when the force P acting along the semiaxis b. 
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ς
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Conversing the discussed loading characteristic into dimensionless form. Analyzing relationship (4), using 
π-theorem (Hanche-Olsen, 2004). In the discussed expression n=6 of independent physical variables. P, δ [delta] 
a, b, J, E, and k=2 of independent physical quantities: force (N), length (m). Then, according to π-theorem, a 
number of dimensionless criteria, which is sufficient for a purpose of a description of the system is p = n - k = 4. 
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Dimensionless strain can be presented in a form of a ratio of strain of an ellipse to an initial radius of a curvature 
of a ring R0:  

( )
1 1

1
0 2
a a

a R aE e

δ πδς = = .                         (11) 

Expressing the equation for a dimensionless force in a following form 

( )
( )

2

2 22
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2
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4

aE e
P

Pa E ePR

EJ EJ EJ

π
β

π

 
⋅ 
 = = = .                     (12) 

The third dimensionless parameter – eccentricity of ellipse e – was introduced earlier. The indexes of 
dimensionless parameters correspond to the indexes dimensional parameters (7).   

The criteria, which characterizes a size of a cable’s cross section  

0

d

R
χ = ,                          (13) 

where d - average diameter of a fine wire of an ellipse's cable.  

Aside from aforementioned criteria of similarity, for that system parameter n can be considered, which 
determines a number of fine wires in an ellipse nw. In that study nw=35 (valid for the prevalent wire rope) is 
accepted as a permanent value. 

In a dimensionless form, expressions for a determination of loading characteristics for each of cases will vary 
slightly, depending on along which semiaxis of ellipse strain is occurring. 

For cases I and IV, when strain is determined along semiaxes a 

( )3

2 3

8
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j
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,                              (14) 

For cases II and III, when strain is determined along semiaxes b 

( )3

3
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j
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ς
β

π
⋅

= ,                                 (15) 

where i – a case of loading (force acts along big or small semiaxis of an ellipse); j – case of deformation. The 
values of shape coefficients Kj and Kjς also depend on number of cases of strain.  
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                        (17) 

Knowing rigidity characteristics of one-ellipse system by two perpendicular axes, elastic-dampening properties 
of two-ellipse vibroinsulator can be calculated, which is presented below. 

Discussing the case in which vibroinsulator, that consists of two rings (or ellipses) is braced by absolutely rigid 
clamps of Δ [delta] length. In that case, rings will deform and become ellipses, as shown in Figure 4, with a ratio 
of semiaxes of ellipses depends on a value of Δ [delta]. It is necessary to determine loading characteristics of that 
system in a linear apporach. Designated elastic element's parameters: 
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Figure 4. Scheme of two ellipse vibroinsulator 

R1 – radius of the internal ring before bracing, [m]; R2 - radius of the external rings before bracing, [m]; a1 – a 
big semiaxis of an internal ellipse, [m]; b1 – a small semiaxis of an internal ellipse, [m]; a2 – a big semiaxis of 
an external ellipse, [m]; b2 – a small semiaxis of an external ellipse, [m]; J1 – moment of inertia of an internal 
ellipse's cross-section, [m4]; J2 – moment of inertia of an external ellipse cross section, [m4]; E – module of 
elasticity of a material, [Pa] 

 

Solving the problem by following the algorithm: 

1. Determining values of semiaxis of ellipses a1, b1, a2, b2 with a condition of their bracing by the clamp Δ.  

2. Then, strain of an external ellipse by force P is defined as double strain δyI [delta] semiellipse with semiaxis 
and a2, b2, with rigidly restricted ends with an assumption that an inner ellipse is absolutely rigid J1=∞. 

By a disclosure of static indeterminateness an expression of a lateral force (X) is obtained, which is equal to a 
reaction in a support in a horizontal direction. 

3. Then, considering an influence of an internal ellipse. Force X action leads to a joint deformation of both 
ellipses along x axis with following value 

1 2

2
X

X X

Х
С С

δ =
+

,                             (18) 

where С1X and C2X – rigidities of internal and external ellipses.  

4. Knowing the value of a horizontal strain δX [delta] and using relationships which were obtained for a single 
ellipse, determining force X', which might deform an external ellipse on a value of δX [delta] with the 
assumption that there is no inner ellipse. Then, determining strain of an external ellipse in a vertical direction δyII 
[delta]. 

5. The final equation for a determination of total strain of the system due to force P is as follows: 

yIIyIy δδδ +⋅=Σ 2 .                            (19) 

For practical purposes, two cases of two ellipse system's strain are of interest, considering that ellipses, braced by 
a rigid clamp, are deformed jointly in a horizontal direction. 

I. If Δ < Δ 0 [delta] an inner ellipse is deformed along semiaxis a1, and an external is deformed along semiaxis b2. 
Strain of both ellipses occurs in a direction of force X, determining their rigidities: 

1
1

1 1 11
X

EJ
C

a b K
= ; 2

2 3
2 32

X

EJ
C

a K
=                           (20) 

II. If Δ > Δ0, an inner ellipse is deformed along semiaxis b1, and an external is deformed along semiaxis a2. Strain 
of both ellipses occurs in a direction of force X, determining their rigidities: 

1
1 3

1 31
X

EJ
C

a K
= , 2

2
2 2 12

X

EJ
C

a b K
= .                       (21) 

If Δ < Δ0, [delta] the expression for load characteristics of two ellipse system is as follows:  
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where coefficients K are sets of parameters of ellipse’s rings: 
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If Δ > Δ 0 [delta], then the expression for loading characteristics:  
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where coefficients K are sets of parameters of ellipse’s rings, which depends only on an external ellipse 
eccentricity and can be determined using the equation: 
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Introducing, aside from aforementioned, two new criteria, which are convenient for a calculation of two ellipse 
system: dimensionless moment of inertia of a cross-section μ [mu] and a ratio of big semiaxis of external and 
internal ellipses γ [gamma]: 

2 2

1 1

, .
J a

J a
μ γ= =                             (30) 

Expressions (24) and (28) are represented in a dimensionless form, using a set of criteria (11, 12, 13) and (32), 
then, the expression for a determination of dimensionless force is obtained. For the case I, when Δ < Δ 0 [delta]  
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For the case II, when Δ > Δ 0 [delta] 
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Initial distance between the rings: 

0 2 1R RΔ = −                                   (33) 

For an assembly clamps are used, in which rings will be installed at a distance Δ [delta] from each other. The 
rings will become deformed in accordance with their own nonlinear characteristics, until stresses in the clamp 
from both rings will become balanced. Introducing criteria of dimensionless length of bracing ξ [xi], 
dimensionless radius λ [lambda] and dimensionless moment of inertia of cross-section μ [mu]. 

0

0

ξ Δ − Δ
=

Δ
, 2

1

R

R
λ = , 2

1

J

J
μ = .                               (34) 

Then, each ring’s strain along a line of bracing can be found as follows. Presenting loading characteristics of 
both rings on the same graph (Figure 5). However, in a case of a dimensionless bracing length ξ < 0 [xi], the 
graph for the first rings will be in a normal form, because it is stretched, and for the second ring the graph is in 
an upturned form, because it is compressed (see Figure 5). When dimensionless length of bracing ξ > 0 [xi], the 
graph for the second ring is in a normal form and for the first one it is in an inverted from. 

 

Figure 5. A determination of strain of rings in bracing 
 
Introducing movable coordinate system xАy. Combining the origin of a coordinate system (point A) with the 
curve of loading characteristics for the first ring, as it is shown in figure 5. Designating in the selected coordinate 
system bracing length Δ in a form of a segment AB, where point B has coordinates (2Δ0-2Δ; 0) and then starting 
to move the coordinate system along the curve. As soon as point B is engaging the curve of loading 
characteristics of the second ring, strains stresses of rings are becoming aligned and then will become equal to P0 
and strains will distribute in a ratio δ1:δ2 [delta]. From mathematical perspective, this operation can be written in 
a form of a system of equations, which is correct for any length of bracing.  

1 2

2 1 0

( ) ( ),

2 2 .

P Pδ δ
δ δ

= −
 − = Δ − Δ

                            (35) 

In the first approximation, replacing obtained elements of a complex shape with ellipses having semiaxes a1, b1 
and a2, b2, where 

1 2
1 1 2 2

1 2
2 2 1 1

; , 0,
2 2

; , 0.
2 2

a R b R if

a R b R if

δ δ ξ

δ δ ξ

 = − = − <

 = + = + >


                    (36) 

and, then, obtaining loading characteristics of assembled EDE, using FEM (Finite element method) (Figure 7). 

Using mathematical software and graphs, obtained with FEM, it is easy to approximate functional expressions in 
a way that is desirable for a user and with a desired accuracy (Figure 6, 8).  

where axis [beta] - Dimensionless force β; [zeta] - Dimensionless strain ς; [gamma/mu] - Ratio of dimensionless 
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axes of an ellipse to moment of inertia of cross-section γ/μ 

 

Figure 6. Graph of a relationship between dimensionless force β [beta] and ratio of dimensionless axes of an 
ellipse to moment of inertia of cross-section γ/μ and dimensionless strain ς [zeta] for P||b 

 

Figure 7. Graph of a relationship between β = f(е2/e1, ςy) with an area, where rigidity is close to quasi-zero 
 
where axis [beta] - Dimensionless force β; [zeta] - Dimensionless strain ς; [xi] - Dimensionless length of bracing 
ξ 

 
Figure 8. Graph of a relationship between dimensionless force β [beta] and dimensionless strain ς [zeta] and 

dimensiоnless length of bracing ξ [xi] for μ=8 
 
In conclusion, the graph of a relationship between dimensionless loading characteristics of the system and length 
bracing β=f(ς,ξ) is presented (see Figure  8). It is presumed the rings, which during their work belong to an 
ellipse type, in an initial moment belong to circular type. Considering the case when initial rings have equal 
rigidities (μ= 8) [mu]. 

3. Results 
It is established that an implementation of two ring vibroinsulator with a variable degree of ellipticity of rings 
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allows to obtain a significant difference of rigidity properties in one structure, which can be up to two orders. At 
the same time, a change of geometry of ellipses has much greater influence, than a change in an elastic element's 
cross-section moment of inertia. 

It is established that use of bracing lengths Δ [delta] as a control parameter allows to change geometry of system 
and, as a consequence, intrinsic frequency of a system ω0 [omega] in 10 times, thus, ensuring effectiveness of 
vibroinsulation E of an object, that is being protected against vibration, on a level of 99%.  

From the analysis of graphs, presented in Figure 6 ... 8 it can be concluded that: 

1. An increase of eccentricity is beginning to significantly influence rigidity, in a case e>0.8, and in the same 
time, in a case of equally rigid, before clamp, rings, an external ellipse will have a greater influence. 

2. An increase in a ratio of semiaxes γ [gamma] increases rigidity of a vibroinsulator, but decreases working 
range of displacements, but in the same time an increase of dimensionless moment of inertia of cross-section μ 
[mu] leads to opposite results. The ratio γ/μ has a greater influence on rigidity characteristics of vibroinsulator in 
a case a force acts along small seimaxis of an ellipse (P||b2), in a case a force acts along big semiaxis (P||a2), 
eccentricity influence prevails. It is recommended to accept γ>8 [gamma] becasue of a small working range of 
displacements. 

3. On the graphs, where a force acts along big semiaxis (P||a2), in an area of compression, an area with rigidity, 
which is close to quasi-zero, is distinguishable (Figure 7). In a case, a force acts along small semiaxis of an 
ellipse (P||b2), that area doesn't exist or has smaller size.  

5. Two ring vibroinsulator has a great potential for a regulation. Thus, by changing only a parameter ellipticity of 
rings, a change of rigidity in almost 1000 times can be achieved, which is much greater, than in a case of a 
vibroinsulator, which consists of one ellipse ring; a change in the ratio γ/μ in a range from 0.15 to 0.55 allows to 
change rigidity in almost 300 times, and all of those without a significant change of a vibroinsulator's dimensions, 
which allows to achieve efficiency of vibroinsulation (E), that is close to 100 %.  

4. Discussion 
In the presented study following results were obtained. A change of bracing length, as it follows from the graph 
in Figure 8, can change rigidity of vibroinsulator in compression area in 5 times, in tension area in 370 times, 
that is about one-third from the theoretical capabilities of a vibroinsulator, which are discussed above, but, 
nonetheless, it is a good result (Ao et al. 2006, Belоusоv et al., 1985, Jiang et al., 2008, Mihir, 2011). The range 
of adjustment can be increased, by abandoning a circular shape of rings before bracing, i.e., making them 
initially in an ellipse shape, for example, using thermofixation (Pоnоmаrev, 2003, Poppet al., 2003, Ulаnоv and 
Pоnоmаrev, 2009). 

Thus, a change of ellipse rings geometry through their bracing is an effective tool for management of dynamic 
properties mechanical system which is being protected from vibration. 

That feature makes vibroinsulator a very interesting object, for a development on its basis vibroprotective 
manageable systems (Hakan et al., 2011, Jiang et al., 2005). 

5. Conclusions 
It is necessary to note, that the presented paper does not cover the entire list of issues which have to be 
considered in a case of a development of a methodology for a calculation of adjustable vibroprotective systems 
characteristics. In further studies, it is planned to investigate a problem of analytical determination of dampening 
characteristics of vibroinsulators. In addition, study of strain of multi-ring vibroinsulators, which is occurring 
with high speed, in order to use those principles in systems automated vibration damping is of interest. 

Acknowledgements 
This work was supported by the Ministry of education and science of the Russian Federation in the framework of 
the implementation of the Program of increasing the competitiveness of SSAU among the world's leading 
scientific and educational centers for 2013-2020 years. 

References 

Balyakin, V. B., Falaleev, S. V., & Novikov, D. K. (2002). Air-tightness of secondary gas end seal assembly. 
Gazovaya Promyshlennost, 8, 56-58.  

Barry, O., Zu, J. W., & Oguamanam, D. C. (2014). Analytical and experimental investigation of overhead 
transmission line vibration. Journal of Vibration and Control. WOS: 1077546313517589. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 2; 2015 

330 
 

Belousov, A. I., & Novikov, D. K. (1986). Selection of GTE rotor bearing hydrodynamic damper type. Soviet 
Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 29(3), 6-10.  

Belousov, A. I., & Falaleev, S. V. (1989). Gasostatic face seal with elastic working surface. Soviet Journal of 
Friction and Wear (English translation of Trenie i Iznos), 10(3), 34-38. 

Belousov, A. I., Novikov, D. K., & Eskin, I. D. (1981). Theory of hydrodynamic dampers with cylindrical and 
end slots. Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 24(3), 13-17. 

Belousov, A. I., Balyakin, V. B., & Novikov, D. K. (1985). Experimental study in pressure distribution in the oil 
film of short hydrodynamic damper. TRENIE & IZNOS, 6(4), 648-652. 

Belousov, A., Balyakin, V. B., & Novikov, D. K. (1985). Experimental study of pressure distribution in lubricant 
layer of 'short' hydrodynamic dampers. Soviet Journal of Friction and Wear (English translation of Trenie i 
Iznos), 6(4), 56-59. 

Belousov, A. I., Ponomarev, Y. K., Pronichev, Y. N., & Krypaev, D. G. (2009). Theory of an annular corrugated 
damper in the vibrator precession motion. Russian Aeronautics, 52(2). Date Views 17.02.2014 
http://dx.doi.org/10.3103/S1068799809020111 

Chegodaev, D. E., & Ponomarev, Y. K. (1993). Multilayer shock absorbers with controllable elastic hysteresis 
characteristics. Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika, 2, 63-67. 

Hakan, Y., Selçuk, M., & Sadettin, K. (2010). Hybrid input shaping to suppress residual vibration of flexible 
systems. Journal of Vibration and Control, 18, 132. http://dx.doi.org/10.1177/1077546311403179 

Hanche, O. H. (2004). Buckingham's pi-theorem. NTNU. Retrieved April 9, 2007. Date Views 01.09.2014. 

Hongrui, A., Jiang, H., & Ulanov, A. M. (2006). Estimation of the fatigue lifetime of metal rubber isolator with 
dry friction damping. Experimental Mechanics in Nano and Biotechnology, Parts 1 and 2, Vol. 326-328: 
949-952. WOS: 000243448201010. 

Hongrui, A., Jiang, H., Wei, W., & Ulanov, A. M. (2006). Study on the damping characteristics of MR damper in 
flexible supporting of turbo-pump rotor for engine. ISSCAA 2006: 1st International Symposium on Systems 
and Control in Aerospace and Astronautics, 1-2, 618-622. WOS: 000237415000129. 

Jiang, H. Y., Zhang, R. H., Zhao, K. D., & Novikov, D. K. (2005). Analysis of damping characteristics of 
squeeze film damper with metal rubber. Tuijin Jishu/Journal of Propulsion Technology, 26(2), 174-177. 

Jiang, H. Y.,  Hao, D. G., Xia, Y. H., Ulanov, A. M., & Ponomarev, Y. K. (2008). Damping characteristics 
calculation method of metal dry friction isolators. Journal of Beijing Institute of Technology (English 
Edition), 17(2), 173-177. 

Liu, T. Y., Chiang, W. L., Chen, C. W., Hsu, W. K., Lu, L. C., & Chu, T. J. (2010). Identification and monitoring 
of bridge health from ambient vibration data. Journal of Vibration and Control, 17, 589. 
http://dx.doi.org/10.1177/1077546309360049 

Marinin, A. V.,  Fedotov, V. M., Ostapenko, V. I., Serbin, V. A., Kuchkin, V. I., & Ponomarev, Y. K. (1978). 
Producing steel St3sp for plates. Metallurgist, 22(2), 114-115. http://dx.doi.org/10.1007/BF01087856 

Mihir, C. M. (2011). Free vibration of tapered isotropic rectangular plates. Journal of Vibration and Control, 18, 
76. http://dx.doi.org/10.1177/1077546310396800 

Nurkan, Y., & Sakman, L. E. (2006). Vibrations of a Rectangular Bridge as an Isotropic Plate under a Traveling 
Full Vehicle Model. Journal of Vibration and Control, 12, 83. http://dx.doi.org/10.1177/1077546306061411 

Ponomarev, Y. K., Ermakov, A. I., Simakov, O. B., & Mikhalkin, I. K. (2013). Metallic counterpart of rubber: A 
material for vibration and shock protection. Metal Science and Heat Treatment, 55(1-2). Date Views 
17.04.2014. http://dx.doi.org/10.1007/s11041-013-9570-3 

Ponomarev, Y. K., & Kalakutsky, V. I. (2003). The multilayer all-metal vibration filters with elastic elements of a 
regular structure [Mnogosloinie celnometallicheskie vibroizoliatori s uprugimi elementami reguliarnoi 
strukturi]. Samara State Aerospace University, Samara, pp. 198. 

Popov, E. P. (1986). The theory and calculation of the flexible elastic rods [Teoria i raschet gibkih stergnei]. 
Nauka, Moscow, pp. 296. 

Popp, K., Lars, P., & Walter, S. (2003). Vibration Damping by Friction Forces: Theory and Applications. Journal 
of Vibration and Control, 9, 419-448. 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 2; 2015 

331 
 

Ulanov, A. M., & Ponomarev, Y. K. (2009). Finite element analysis of elastic-hysteretic systems with regard to 
damping. Russian Aeronautics, 52(3), 264-270. http://dx.doi.org/10.3103/S1068799809030027. 

Yurddas, A., Ozkaya, E., & Boyac, H. (2012). Nonlinear vibrations and stability analysis of axially moving 
strings having nonideal mid-support conditions. Journal of Vibration and Control, 20, 518-534. 

Zhdanov, I., Staudacher, S., & Falaleev, S. (2013). An advanced usage of meanline loss systems for axial turbine 
design optimization. Proceedings of the ASME Turbo Expo 6 A. http://dx.doi.org/10.1115/GT2013-94323 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/3.0/). 


