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Abstract  
Use of coagulants in treatment of wastewater from food industry is one of the most promising techniques to 
establish environment-friendly industries. To date, however, the coagulation process is not yet fully described in 
a manner which is conducive to practical applications and results. In fact, the coagulation process theoretical 
basis, i.e. the classical Smoluchowski’s equation published in 1916, is so complex to solve that virtually no 
practical application exists in the field of applied chemistry.  

This article illustrates the Authors’ endeavor to overcome this impasse. This has been achieved by constructing a 
mathematical model of the guiding force in the phenomenon, i.e. the frequency of particles collisions, and then 
utilizing this model to define, starting from Smoluchowski’s equation, a function which describes both the 
coagulation and sedimentation processes depending on space (vertical coordinate z) and the concentration of 
coagulant.  

This study can be considered as the first step of a methodology of practical application of the Smoluchowski’s 
equation to process and equipment design. 

Keywords: dispersed systems, coagulation, frequency collisions, process design, sedimentation, 
Smoluchowski’s equation 

1. Introduction 
Wastewater from food industry can be considered as a dispersed system (suspension), i.e. a heterogeneous 
system in which particles are dispersed in a continuous phase. Agglomeration of particles occurs during 
purification with coagulants, resulting in both coagulation and sedimentation. 

The classic equation by Smoluchowski (Smoluchowski, 1916) spells the theoretical basis of the coagulation 
process. Its practical application, however, is limited because of the complexity of its solution. In particular, the 
lack of a mathematical model for the collisions in the dispersed phase, which is the guiding force in the 
phenomenon, has been so far a real bottleneck. To date researchers do not agree on how to overcome this 
difficulty. The authors of this paper are of the opinion that the definition of a model for the collisions is crucial in 
order to make significant progress.  

Indeed, most research conducted so far has consisted in the effort of finding numerical solutions to the equation 
by means of theoretical approaches (Filbet and Laurencot, 2004; Qamar and Warnecke, 2007) using the homotopy 
perturbation method (Yэldэrэm and Kocak, 2011) or stochastic particle method (Kolodko et. al, 1999). Some other 
study deals with the Smoluchowski equation with constant (Kostoglou, 2005) or time-varying kernel (Moseley, 
2007). A popular method for the study of aggregation dynamics, is Brownian Dynamics Simulations (BDS) (Sauer 
et. al, 1996: Kelkar et. al., 2013; Struckmeier, 2005). 
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The authors’ approach, as documented in this paper, consisted in using the experimental data obtained in 
previous research (Zueva et. all., 2013) to construct a mathematical model. 

2. Construction of Mathematical Model 
2.1 The Frequency of Collisions Function 

The following assumptions were made: 

1. That in volume L3, at the time t=0, be N particles characterized by volume vi. 

2. That distance between particles is much grander than particles’ size. 

3. That characteristic time between collisions of particles with each other beτ . 

4. That collisions of pairs of particles be much more numerous than collisions among grander number of 
particles (three or more), so that consideration shall be given only to collisions of pairs.  

5. That the time of interaction of particles int (i.e. the time from the initial interaction to the time when a new 
particle with new properties comes into existence) is much shorter thanτ . 

6. That system concentration is low, so that particles are distributed randomly. This assumption justifies 
considering a stochastic (Marc) process of collision. 

Based on the above assumptions the experimental data allowed defining an initial calculation of number of 
particles in the sample, as follows: 
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in which 0С  (1480.10-3 mg/L) is average content of solid residue, 0ρ  (2.7.103 g/cm3) is average density, 0l  
(3.54 μm) is average size of suspended particles (Zueva et. al., 2013). 
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To analyze experimental data (Table 1) the Smoluchowski coagulation equation was applied (Smoluchowski, 
1916): 
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where t is the current time; v is particle volume; ( , )v tφ  is density function of particles distribution depending 
on particle volume; β  is the coagulation kernel, which governs the time rate at which particles aggregate.  

After integration according to v within the interval from 0 to ∞ , (1) takes the following form:  
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Introducing the dimensionless variables 0x /v v= , 0 0[ ( )] /n n t nτ = − , where 0
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particle volume in the initial time, τ  age of spectrum ( )0 1τ≤ ≤ .  

Assuming that 0 constβ β= = is a function of particle frequency collision. 

Assuming that the number of particles N at time t is equal to: 
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Table 1. Kinetics of coagulation process in wastewater of dairy plant with different doses of aluminum sulfate 

t, s
10 μl/L 30 μl/L 50 μl/L 

l, μm l3, μm 3 l, μm l3, μm 3 l, μm l3, μm 3 

0 3.54.10-6 4.44.10-17 3.54.10-6 4.44.10-17 3.54.10-6 4.44.10-17 
12 3.54.10-6 4.44.10-17 3.60.10-6 4.66.10-17 3.54.10-6 4.44.10-17 
24 3.54.10-6 4.44.10-17 3.60.10-6 4.66.10-17 3.60.10-6 4.66.10-17 
36 1.00.10-5 1.00.10-17 3.40.10-5 3.93.10-14 3.70.10-5 5.06.10-14 
48 2.80.10-5 2.19.10-14 3.00.10-4 2.70.10-11 1.06.10-4 1.19.10-12 
60 1.19.10-4 1.68.10-12 8.31.10-4 5.74.10-10 3.30.10-4 3.59.10-11 
72 2.50.10-4 1.56.10-12 1.31.10-3 2.25.10-9 5.10.10-4 1.33.10-10 
84 4.12.10-4 6.99.10-11 1.57.10-3 3.87.10-9 7.42.10-4 4.08.10-10 
96 4.66.10-4 1.01.10-10 1.64.10-3 4.41.10-9 8.50.10-4 6.14.10-10 
108 4.80.10-4 1.10.10-10 1.65.10-3 4.49.10-9 8.80.10-4 6.81.10-10 
120 4.80.10-4 1.10.10-10 1.65.10-3 4.49.10-9 8.90.10-4 7.05.10-10 

 
Than the average volume of particles at the time t  is:  

                                        ( ) ( )
( )

N t
v t

n t
= .                                     (6) 

As the total volume of particles does not change (we can assume in first approximation) we can divide it by 0n : 

                                 ( ) ( )
( )

( )0 0

0

/

/ 1 1

N t n v t v
v t

n t n τ τ
= = =

− −
                              (7)  

We can therefore conclude that the following formula gives the average volume of particles in function of time 
(t): 
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Plotting experimental data as shown in Figure 1, i.e. considering a cubed dimension on the y axis, the data show 

a linear dependence ( y a x b= ⋅ + ), that is, regressive equations which can be calculated using the method of 

least squares. The task is significantly simplified if to take into account the slope coefficient only, the reciprocal 

value of which will be 0 0
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Which we shall call the Frequency of Collision Function 

We need to define the coefficient a in Eq. (9). We will do this as follows. We have a linear equations and we 
have to find coefficients a  and b  with the condition  
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Figure 1. Kinetics of the coagulation process in the form of inverse relationship. Aluminum sulfate dosage: 1 – 

10 μl/L; 2 – 30 μl/L; 3 – 50 μl/L 

 

To define a  and b  we write the following equations system: 
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This is equal to a minimization condition. Expanding this system: 
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We will conduct a calculation according to the condition that y t→ , 3x l→ . Since the order t  and 3l  is 
different, we will apply a system of dimensions of minutes (t/60) and 0.1 mm. Results of calculations are 
presented in Table 2. 
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2.2 The Coagulation and Sedimentation Function 

Information on the value of the frequency of collision enables us to describe the simultaneous processes of 
coagulation and sedimentation. In order to do this we shall examine a one-dimensional case (z coordinate). The 
left hand side of Smoluchowski’s equation (1) in this case shall contain a divergent operator, as follows:  

( ) ( )z,v,t
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t
u z v t
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φ
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∂ ∂− =  ∂ ∂
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in which u  is the speed of sedimentation. 

If we assume that 0u u const= = (value of 0u  taken from experimental data), then the equation (11) again 
admits integration according to v within the scale from 0 to ∞ , which leads the equation in the form: 
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with a differential equation as a result: 
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Introducing the new variable M defined as follows: 
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then (19) and (22) take the form: 
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Applying Laplace’s transformation to (23) and (24) according to Θ  variable:  
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in which , Ls M  are Laplace’s real numbers Θ  and M . 

Solving (26) and (27) by Cauchy: 
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the original of which is: 

                               ( ) ( ) ( )M Z, 1 Z ZΘ = + Θ − Θ − ⊥ Θ − .                          (29) 
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The above is the solution of Eq. (24) and Eq. (25), in which ( )z⊥ Θ − is the Heaviside step function. 

Considering ( ),M Z Θ  and ( ),N Z Θ , recalling Eq. (23), the description of coagulation and sedimentation takes 
the following form: 

                            ( ) ( ) ( )
1

,
1

N Z
Z Z

Θ =
+ Θ − Θ − ⊥ Θ −

 .                      (30) 

Which we shall call the Coagulation and Sedimentation Function (CSF) (Figure 2). 

N

Θ

 
Figure 2. Graphic rendering of Coagulation and Sedimentation Function (obtained by using MAPLE) 

 
Given h as the height of a coagulation and sedimentation zone (from experiment) then the dimensionless 
operator Zh is known and the average concentration throughout the height can be calculated as follows: 
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In our experiment, waste water was treated with dosage of coagulant 10 μl/l and h was equal to 0,15 m. 
Consequently, the value of hZ  was: 

13 13
h

1
2.359 10 1.8310 0.15 / 0.01 32.3

2
Z −= =  

Results of calculations are presented in Table 2. 

 

Table 2. The values of l, 0u , 0β and hZ  calculated with the above formulas 

Coagulant dosage, μl/L l, μm 0u , m/s 0β , m3/s hZ  
10 454 0.01 1.83 10-13 32.33 
30 786 0.03 0.08 10-13 0.45
50 642 0.02 0.71 10-13 6.25

 
3. Conclusions 
This research has defined two functions: the Frequency of Particle Collision 0β , Eq. (9) and the Coagulation 
and Sedimentation Function ( ),N Z Θ Eq. (30).  

Z
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In designing a treatment process, the value of 0β can be calculated utilizing the expression Eq. (9) and filling in 
experimental data. Once 0β  is determined, filling it in the Coagulation and Sedimentation Function Eq. (30) 
results in a description of the coagulation and sedimentation processes which can be usefully applied to 
equipment design. 
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