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Abstract 
Flutter equations in frequency domain, is solved by use of solutions of eigenvalues and eigenvectors of a real matrix in 
a state-space form. However, using a complex general matrix to compute eigenvalues and eigenvectors directly 
analyzes the flutter frequencies and flutter speeds. Furthermore, eigenvalues and eigenvectors of a complex general 
matrix are derived in detail. Finally, according to the solution principle of eigenvalues and eigenvectors of a complex 
general matrix, a practical flutter problem is solved through P-K method. 
Keywords: Flutter Equation, Complex Matrix, Eigenvalue, Eigenvector, Technique for Eigenvalue Tracking 
1. Introduction 
Eigenvalue and eigenvector computation may be the most prolific for special case numerical computation. A numerical 
solution of characteristic values and vectors for a general real matrix is demonstrated in many books. As a general 
complex matrix, however, its solution is more intricate, when we consider the size and speed of modern computers.  
In general, complex eigenvalues have applications in the solution of some physics problems and some practical 
engineering problems. For example, some flutter analysis in aircraft design uses eigenvalues in this paper. 
2. Eigenvalues of a General Complex Matrix 
Computing the characteristic equation is usually not a good way to compute eigenvalues for n greater than 4 or 5. It 
becomes difficult to compute the coefficients of the characteristic equation accurately and it is also difficult to compute 
the roots accurately. 
In the present study, in order to save some time, the general complex matrix is first balanced. Unitary similarity 
transformations are used to reduce this balanced matrix to a complex upper Hessenberg matrix. The QR algorithm is 
used to compute the eigenvalues of this Hessenberg matrix, which is simplified to the first-order blocks or the 
second-order blocks. Then, the eigenvectors of the original matrix are computed by the inverse power method. 
2.1 Hessenberg Transform of a Complex Matrix[1][2] 
Let a nn× complex matrix [ ]ijaA =  be represented in the form [ ]naaaA ,,, 21 L= , where naaa ,,, 21 L  are vectors of 
order n. 

Step1. Suppose that a11 is equal to zero, and the first column of A is expressed as [ ]Tnaaa 121

~
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where B2 is a unitary square matrix of size (n-2)× (n-2). Again, let ⎥
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Where 2,,2,1 −= nk L . The unitary similar transform of the matrix A is represented by  
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is the bisub-diagonal elements of this Hessenberg matrix.  
2.2 Hessenberg Transform of a Complex Matrix[1][2] 
Suppose that the matrix A is complex square of size nn× , and A is expressed by 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnn21

2n2221

1n1211

a     a    
        

a     a    
a      a    

L

OM

L

L

na

a
a

A
. The Application of the two step QR algorithm is presented as follows: 

1) Let a unitary matrix Q0, ⎥
⎦

⎤
⎢
⎣

⎡
=

3-n

)0(
0

0 I           O
O       Q

Q , where )0(
0Q  is a unitary square matrix of size 3×3. The unitary 

similarity transformation can be given by 001 AQQA = . Let  



Vol. 3, No. 10                                                                 Modern Applied Science 

 44 

nnnn aa += −− 1,1α , 
1,,11,1 −−−− −= nnnnnnnn aaaaβ , βα ++−= 211211110 )( aaaap , 

)( 2211210 α−+= aaaq , 32210 aar = . Here  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
−

++
+

−

=

)(s
p

               
)(

q
-           

)(
q

-               
)(s

p
         

s
q

-

   
s
r

-                                 
s
q

-                    

000

2
0

0

0

000

00

0

0

000

00

000

2
0

0

0

0

0

0

0

0

0

0

0

)0(
0

sps
q

sps
r

s
r

sps
r

sps
r

s
p

Q
                         (4) 

Where 
⎪⎩

⎪
⎨
⎧

−<+++−

−≥+++
=

.

,

0000
2

0
2

0
2

0

0000
2

0
2

0
2

0
0

spspifrqp

spspifrqp
s   

2) Similarly, the unitary matrices 221 ,,, −nQQQ L  are defined by 
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Clearly, the unitary similar transformation can be written as  

2,,2,1,1 −==+ niwhereQAQA iiii L . 

3) Repeat the above two steps, until this Hessenberg matrix is simplified to the first-order blocks or the second-order 
blocks in the diagonal blocks. Finally, each first-order block or second-order block is directly computed to the 
corresponding eigenvalues. 
3. Eigenvectors of a General Complex Matrix[2] 
Assume that the n×n complex matrix A has n eigenvalues λ1, λ2, . . . , λn. Consider the eigenvalue λi, and suppose that a 

n×n complex matrix IAB ii

−

−= λ , for each ni ,,2,1 L=  has the eigenvalues inii

−−−

−−− λλλλλλ ,,, 21 L . 

Select i

−

λ , which satisfies 610−
−

≤− ii λλ . Apply inverse power method to find the eigenvector Vi of the smallest 

ii

−

− λλ  of Bi, that is, the eigenvalueλi of the matrix A with the corresponding eigenvector. Thus, V1, V2,…, Vn are 
all eigenvalues of the matrix A. 
4. A Test Case 
4.1 Flutter Equation 
Aeroelastic flutter, is a rapid self-feeding motion, potentially destructive, excited by aerodynamic forces, in aircraft 
structures, control surfaces and so on. Therefore, it is very critical for airplane engineers to analyze aeroelastic flutter. 
The fundamental equation for modal flutter analysis by the PK-method[4][5]  

0])2/(/)4/([ 22 =−+−
−−

qQVKkQbVpMp RI ρρ               (6) 
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Where p is the eigenvalue )( i±γω ,γ  is transient decay rate coefficient, ρ is air density, V  is the free-stream 

velocity, and q are the generalized displacements for a structure with 
−−

KandM being the inertial and stiffness 

properties, respectively. The generalized aerodynamic properties are given by matrix IR iQQQ += , where 1−=i .  
Eq. (6) is usually rewritten in a state-space form: 
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As seen from the above matrix A, the solution of the flutter equation is changed to the eigenvalue problem of the real 
matrix. 
However, let )(
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ρ ,and computing the eigenvalues of the complex matrix A’ also solves 
the flutter problem. 
4.2 Use of Eigenvector for Eigenvalue Tracking[5] 
In the present study, the solution for one mode at all speeds is found before the solution for the next mode is started. The 
explanation which follows is for the solution of mode i only. Although only the solution for mode i is valid (because the 
aerodynamic matrix is a function of reduced frequency), the eigenvalues and eigenvectors corresponding to all the other 
modes are calculated.  
The natural frequency of mode i is used in the first calculation of the reduced frequency at the first speed. The 
aerodynamic matrix is interpolated and the eigenvalue routine is called to solve the eigenvalues and eigenvectors. The 
eigenvectors are compared to unit vectors, corresponding to the natural modes, in order to determine which eigenvalue 
corresponds to mode i. This eigenvalue is used in the next calculation of the reduced frequency and the eigenvalue 
routine is called again. The process is repeated until the reduced frequency converges. At each successive speed, the 
converged eigenvalue of the previous speed is used in the first calculation of the reduced frequency. The aerodynamic 
matrix is interpolated and the eigenvalue routine is called to solve the eigenvalues and eigenvectors. The eigenvectors 
are compared to the converged eigenvectors of the previous speed to determine which eigenvalue corresponds to mode i. 
This eigenvalue is used in the next calculation of the reduced frequency.  
Eigenvectors are compared as follows: A matrix of scalar products of the converged eigenvectors of the previous speed 
and the new eigenvectors is calculated. Each column of the matrix corresponds to a new eigenvector and each row to an 
old eigenvector. The element in row i and column j of the matrix is the scalar product of old eigenvector i and new 
eigenvector j. The matrix is then searched for the largest element. The corresponding old and new eigenvectors are 
taken to belong to the same mode. 
The scalar product of two complex vectors must be defined to be independent of scaling and phase. A definition which 
satisfies these conditions is 
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4.3 An Application Example 
Flutter is a typical dynamic aeroelastic instability phenomenon. It is induced by a self-excited physical mechanism that 
the vibrating aerodynamic surface absorbs energy from surrounded air flow. When the airspeed is lower, it will behave 
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in a damped motion after perturbed. However, as it is up to some critical airspeed, the vibration amplitude will increase 
sometimes wildly, hence flutter occurs and always leads to a disaster. Flutter solution is mainly a stability analysis 
procedure. Firstly, the aeroelastic equation of motion is established, usually in frequency domain, where the unsteady 
aerodynamics is computed by panel methods, e.g. doublet lattice method (DLM) at subsonic range. Then followed is to 
solve the eigen roots of the flutter equation. Most of the root would be complex. The flutter occurs as the one of the 
roots’ real part changes from negative to positive. 
An example of T-tail structure is given, and its generalized mass, stiffness and aerodynamic matrix are extracted from 
the standard flutter solution sequence of NASTRAN’DMAP language. According to the eigenvalue solution and the 
eigenvector for the eigenvalue tracking, home-made program of P-K method is used to compute the flutter analysis. The 
g ~V andω ~V diagrams are illustrated: 
As shown in Fig.1 and Fig.2, the aeroelastic flutter speed of the horizontal tail is 275m/s, while that of the vertical tail is 
335m/s. 
5. Remark 
1) The numerical simulation demonstrations that the above method for flutter solution by use of eigenvalues and 
eigenvectors is proved to be a more reliable and robust flutter analysis than the standard P-K method. 
2) Compared with the other eigenvalue tracking, this method using the eigenvector to determine the corresponding 
eigenvalue largely simplifies the computational and iterative process. In engineering, it is a practical and efficient 
method in frequency domain. 
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Figure 1. V-g Curve                         Figure 2. V-f Curve  


