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Abstract 
The corrugated steel web of prestressed concrete box-girder with corrugated steel webs is in pure shear stress 
state. The shear-resistant capacity of the corrugated steel web is not determined by the shear strength of steel 
web, but controlled by the shear buckling strength of steel web. The shear buckling mode and ultimate shear 
capacity of corrugated steel webs are analyzed by nonlinear finite elements method. The corrugated webs are 
simulated by 8-node structure shell element. The simulation was done for the defect of corrugated steel web with 
uniform imperfections mode method, and the defects were included in the material nonlinearity and geometric 
nonlinearity. On this basis, the influences of corrugation configuration, the overall profile dimensions and steel 
thickness of corrugated webs on ultimate shear buckling load and buckling mode are investigated. 
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1. Introduction 
Bridge with corrugated steel webs is a kind of composite-structure of steel and concrete using the corrugated 
steel webs instead of concrete webs for conventional prestressed concrete box girders. This structure is 
characterized by reduction of dead weight of main girder, improvement of prestressed efficiency of concrete 
girder and reduction of on-site work and construction cost. Because of its fast construction, light weight, good 
ability of span, aesthetic appearance etc, prestressed concrete composite box-girder bridge with corrugated steel 
webs become more and more popular recent years. Since its appearance, this bridge was investigated and widely 
used in France, Japanese etc. However, as the theoretical research progressed, prestressed concrete composite 
box-girder bridge with corrugated steel webs shows a good tendency of development and variable cross-section 
and large span are adopted gradually in its application. 

The composite box girder with corrugated steel webs is a new structure applying external prestressing technique 
to bridge construction. Compared with normal concrete box girder bridges, in addition to completely avoid the 
web cracking, this structure has many other advantages, such as force definite, lighter weight, beautiful 
appearance, and convenient for construction. It is expected that this structure will be strongly promoted and 
widely used for engineering practice. When the composite box girder with corrugated steel webs bears load, the 
corrugated steel webs are almost in pure shear stress state. Generally speaking, the design of the composite box 
girder with corrugated steel webs is mainly controlled by shear buckling failure, so its shear buckling 
performance is extensively studied. Therefore, how to determine buckling mode and buckling load of the 
corrugated steel web in shear loads is an essential issue in the study of such structures. 

Analysis of corrugated steel web to ultimate shear buckling load and buckling mode with the linear theory of 
small deflection just gets the branch points of buckling load. The elastic branch points of corrugated steel webs 
can be obtained by buckling analysis of ideal structures, while the actual structure inevitably exists initial defects, 
and such defects may induce corrugated steel webs to shift from the ideal branch points of buckling modes to the 
extreme branch points of buckling modes. It is clearly that the linear theory of small deflection unable to 
consider the impact of the structure of the initial geometric imperfections, but also unable to consider the impact 
of the material nonlinearity and geometric nonlinearity, and cannot describe the load and the displacement of the 
structure in the whole process performance. From this perspective, in order to more realistically reflect the actual 
structure stress state, the only way to analyze the structure is to use the nonlinear theory of large deflection, 
considering the material nonlinearity and geometric nonlinearity in the whole process. 
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2) Overall, the ultimate shear buckling load of corrugated steel web decreases as horizontal plate width raises. 

3) With the same corrugation angle and horizontal plate width, the ultimate shear buckling load of corrugated 
steel web decreases as the corrugation depth increases. What’s more, when the depth of the corrugation raises, 
the buckling mode in the nonlinear finite element model will change from global buckling mode to local 
buckling mode. 

4) As the corrugation angle increases, the ultimate shear buckling load of corrugated steel web is slightly 
improved. 

5) With the same the corrugated steel web width, the ultimate shear buckling load of corrugated steel web 
increases slightly as the height of corrugated steel web increases. 
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