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Abstract 

Thermal stratification is an important phenomenon to be evaluated and studied to save energy consumed in fully 
insulated environments and to improve indoor air quality and human comfort. An analytical study to investigate 
stratified flow characteristics in a ventilated environment was presented. Most existing studies were either 
numerical or experimental and correlations for predicting characteristics of stratified flow, such as temperature 
distribution, temperature gradient, stratified layer thickness and height were based on empirical data. A simple 
mathematical model was developed to predict these characteristics. The predictions were compared with the 
published experimental data and good agreement has been obtained. Such a simple model would be very useful 
to practicing engineers for HVAC and designing applications.  
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1. Introduction 

Ventilation is the approach for reaching the best human comfort. It is used to control temperature, humidity, air 
quality and the quantity of needed air to replenish oxygen, or remove moisture, smoke, heat, dust, airborne 
bacteria, and carbon dioxide. Ventilation is used to remove unpleasant smells and excessive moisture, introduce 
outside air, to keep interior building, air circulating, and to prevent stagnation of the interior air. Thermal 
stratification is very important for efficient ventilation, fire exhaust, and solar heating. It affected by the flow and 
the heat transfer parameters that can be improved by controlling these parameters (Hahne & Chen, 1998). 
Stratification phenomenon and stratified flow characteristics are still encountered in many applications; the flow 
of smoke and pollutants in a fully insulated environment often gets stratified. The prediction of stratified flow 
characteristics is so important for preventing and managing HVAC in buildings. Detailed computational and 
experimental simulations and analyses of possible scenarios are performed in order to design effective safety 
programs and installation of HVAC equipment. In this case, smoke and contaminated pollutants from human 
beings, cooking and combustion rise upward to the ceiling due to buoyancy. The indoor smoke and pollutants 
were accumulated in stable stratified layers near the ceiling. Therefore, it is useful to know the height, the 
thickness and the degree of stratification to which smoke/pollutants would rise and other stability characteristics 
of the stratified layers. For high indoor air quality, the smoke is removed out while the fresh air enters near the 
floor level and displacement ventilation flow sets in with very little mixing. The temperature gradient in a room 
is always positive (or zero) and increases up to the ceiling, while the contaminant concentration might have 
another form with a maximum somewhere in the middle of the room. The temperature gradient is very much 
dependent on the ventilation flow rate and not so much about the position of the heat sources (Mundt, 1995). The 
contaminant removal effectiveness (the system’s ability to remove contaminants from the space.), in 
displacement ventilation, was found to be related to the ventilation flow rate, and very sensitive to the level of 
the source and its position (Mundt, 2001). However Hagstrom et al. (2000) found that it was a function of both 
the location and the power of the sources in relation to the supply and exhaust openings. 

Li and Delsante (2001) and Chen and Li (2002) investigated the effect of both wind and thermal buoyancy on the 
position of neutral buoyancy. They used vents at multiple levels, and applied mass, energy and momentum 
equations. It was found that the position of neutral buoyancy can be related to the ratio of the upper and lower 
vent areas depending on the nature of the heat source. Mathematical and experimental investigations done by 
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Hunt and Linden (1999) and Guohui Gan (2010) on the interaction between wind and buoyancy effects in natural 
ventilation of buildings were done to describe the natural ventilation using the combined effects of buoyancy and 
wind. They derived a mathematical model for stratified layer interface height based on wind speed and openings 
heights. 

A relationship between the neutral height of air distribution and ventilation load was investigated by Xing and 
Awbi (2002). The results were obtained for a ventilated room, under several activities, using displacement 
ventilation. The analytical model calculates the temperature elevation in the room with a distributed heat flux. 
The position of neutral buoyancy, (the position where pressure in the room equals that in the exterior), was 
investigated by Andersen (2003); Li et al. (2000); Fitzgerald and Woods (2004). An analytical model was 
developed by Fitzgerald and Woods (2007) who studied the influence of stacks on flow patterns and stratification 
associated with natural ventilation with two openings. Holford and Woods (2007) used analytical models to 
study thermal buffering of naturally ventilated buildings through internal thermal mass. They found that the role 
of thermal mass in buffering the interior temperature was very different under different ventilation rates. Coffey 
and Hunt (2007) developed different analytical models of calculating ventilation effectiveness to evaluate mixing 
and displacement ventilation. 

Chen and Li (2002) as Gilani et al. (2013) studied the effects of buoyancy source, opening sizes and locations of 
a single zone building on displacement ventilation. The investigations were for three level openings. The results 
showed that the ventilation mode is a function of buoyancy source and geometries. They found that the location 
of the stratification interface level height is a function of the geometrical parameters and independent of the 
strength of buoyancy source. The results of Chen and Li, (2002) we’re in an agreement with Linden et al. (1990) 
that the stratification within a space depends on the enterainment produced by buoyancy sources upon the 
geometry of the sources and the openings rather than the source strength while the strength of stratification 
however depend on the source strength. It is also in an agreement with the work of Hunt and Linden (2001), 
which showed that for ventilation driven by a single localized source of buoyancy flux, a stable two-layer 
stratification and displacement flow forms. The steady height of the interface, between the buoyant upper layer 
and the lower layer at ambient density, is independent of buoyancy flux and depends only on the effective area of 
the openings, the height of the enclosure and air entrainment into the plume. Heat loss in solar storage tanks was 
basically the main (destructive) item among several loss factors, investigated by Al-Najem (1993). Al-Najem and 
El-Refaee (1997) did a comparison study for prediction of a turbulent mixing factor (eddy conductivity) at the 
inlet and outlet of a thermal storage tank, also the performance of thermal stratification in that tank. The model 
showed a good agreement with the experimental data of Loehke et al. (1978). The analysis of Alizadeh (1999) 
can be used to link the flow parameters in the stratified layer using the properties of flow in the lower and upper 
zones. Chena Q (2009) studied ventilation performance prediction for buildings. He presented an overview of the 
tools used to predict ventilation performance, such as analytical models, empirical models, small-scale 
experimental models, full-scale experimental models, multizone models, zonal models, and Computational Fluid 
Dynamics (CFD) models. Chena Q (2009) found that the analytical and empirical models had made minimal 
contributions to the research literature in the past year. The small- and full-scale experimental models were 
mainly used to generate data to validate numerical models. The CFD models were most popular and contributed 
to 70 percent of the literature found in this review as well as the large eddy simulation which presented to verify 
the numerical models and numerical methods (Bobin Wang & Guixiang Cui, 2013).  

In summary, most of the previous studies are experimental or numerical, with little analytical work available in 
the literature. This is due to the complexities of the problem and the large number of parameters involved. 
Existing correlations are based on empirical data and their validity is problem specific, thus cannot be employed. 
Considerable efforts were still made to seek more reliable and accurate models (Chena Q, 2009). However, 
simple mathematical models resulting from analytical analysis of the problem is of special significance for both  

It is the objective of the present work to analytically investigate the phenomenon of stratification in a ventilated 
room to predict the temperature distribution at different conditions. The analytical model is derived from the 
fundamental equations of fluid dynamics and thermodynamics. The prediction with the developed mathematical 
model was conducted and comparison was made with experimental data from literature to present the similarities 
and differences between the experimental and analytical predictions. 

2. Theoretical Backgrounds 

Initially, we consider a simple displacement model for a chamber of height, H ventilated by upper and lower 
openings of various airflow rates. It is assumed that the Richardson number of the air within the chamber is high, 
such that the flow is stratified; it is further assumed that the density within the chamber varies hydrostatically 
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Figure 7. Vertical analytical and experimental dimensionless temperature profiles for various air flow rates 

Figure 6 shows the temperature distributions predicted at (T1= 32.25 oC and T2 = 36.7 oC). The agreement 
between the predicted results and measured data of [Awad et al. (2008)] is not as good as that in figures 2 and 4 
were the temperature gradients are (4.7 oC/m and 4.75 oC/m) respectively. Since the temperature gradient in 
figure 6 is (1.5 oC/m) is not efficient for the flow to stratify so it is difficult to get good agreement. The 
percentage difference between the measured and predicted results ranged between (-5% to 0%). Other results can 
be obtained by comparing the predicted observed shape of the vertical temperature profile. This is done in 

Figures 3, 5 and 7, which shows normalized vertical profiles of the temperature increase 
்ି భ்మ்ି భ்	 with the 

normalized height 
௓ு calculated for different values input temperature difference (ΔT= T2 -T1). The shape of the 

calculated profile is sensitive to the values of input temperatures difference ΔT. Higher values of input ΔT tend to 
produce large temperature gradient concentrated in the middle zone of the chamber. Lower values of ΔT tend to 
produce low temperature gradient in both the lower and upper zones. In the lower zone it is an upwards concave 
profile, while in the upper zone it is a downward concave profiles whose shape we're in agreement with the 
experimental results of Awad et al. (2008) mainly in the lower part of the chamber. Figure 3 shows that the 
predicted normalized temperature is in good agreement with the measured values at all zones of the chamber. In 
the upper zone, it is observed that the predicted values were consistently lower than the measured values, whiles 
it is at the opposite in the lower zone. Compared with the results of Awad et al. (2008), the mathematical model 
is reasonably accurate in predicting the temperature profiles in the isolated chamber. Figures 5 and 7 show the 
comparison of the model predictions for high and low temperature gradients with the experimental results Awad 
et al. (2008), Figure 5 represents the case ΔT= 4.75 oC/m and figure 7 the case ΔT= 1.5 oC/m. In the first case the 
flow has a stronger stratification. In the latter case, the stratified region is so small, the mixing above and below 
the stratified region is so high. The small temperature difference will decrease the buoyancy effect and the 
stability of the flow so the Ri, which resulted in weak stratification. In both cases, the qualitative agreement is 
excellent and the quantitative agreement is quite reasonable, and the model slightly over predicts the temperature 
gradients. 

4. Conclusions 

A mathematical model based on first principles, to predict stratified flow characteristics, such as temperature 
distribution and temperature gradient in a ventilated environment is developed. The flow is essentially of 
mechanical displacement type flow leading to stratification. There is a flow parameter, the temperature 
distribution that depends on geometry of the chamber and needs to be obtained for different cases. Comparison 
of the present analytical model with the previous works shows that the model provides favorable acceptable 
solutions for a whole range of flow parameters and ventilation scenarios. So the mathematical model is 
reasonably accurate in predicting the temperature profiles in the isolated chamber. In the light of the present 
analytical investigations, it can be concluded that additional theoretical and experimental Information is required 
for a better understanding of the complex phenomena (stratification) 
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