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Abstract 
This paper introduces ratio estimators of the population mean using the coefficient of variation of  study 
variable and auxiliary variables together with the coefficient of correlation between the study and auxiliary 
variables under simple random sampling and stratified random sampling. These ratio estimators are almost 
unbiased. The mean square errors of the estimators and their estimators are given. Sample size estimation in both 
sampling designs are presented. An optimal sample size allocation in stratified random sampling is also 
suggested. Based on theoretical study, it can be shown that these ratio estimators have smaller MSE than the 
unbiased estimators. Moreover, the empirical study indicates that these ratio estimators have smallest MSE 
compared to the existing ones.  

Keywords: ratio estimator, sample size estimation, coefficient of variation, coefficient of correlation 

1. Introduction 

Consider a population of N  units with observations  i ix , y  for  i 1, 2, , N  where iy  is a value of study 

variable and ix  is a value of auxiliary variable. Under simple random sampling without replacement, an 

unbiased estimator of the population mean 

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A common ratio estimator is R
Xy y
x

 where X  and x  are the population and sample means of the 

auxiliary variable, respectively. The efficiency of the ratio estimator depends on the coefficient of variation of 

auxiliary variable  xC  and coefficient of variation of study variable  yC . Murthy (1964) has suggested that 

if   x

y

C
2C

 , the ratio estimator performs better than the unbiased estimator where   is the correlation 

coefficient between x  and y . The approximate bias and mean square error (MSE) of the ratio estimator are as 

follows: 
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. When the xC  is known, 
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Sissodia and Dwivedi (1981) has proposed a modified ratio estimator, x
SD

x

X C
y y

x C





. The approximate bias 

and MSE of the estimator are 
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where x
x

YR
X C




. Sampath (2005) used the coefficient of variation of the study variable to improve the 

unbiased estimator as 
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In addition, there are several authors, such as Upadhyaya and Singh (1999), Singh and Tailor (2003), who have 
developed various ratio estimators under simple random sampling. 

If the study variable has different mean values in different subpopulations, it is advantageous to draw a sample 
by stratified random sampling. In stratified sampling, a population is partitioned into L  strata. A stratum h 
contains hN  units with observations  hi hix , y  where 1 2h , , , L   and 1 2 hi , , , N  . An unbiased 

estimator of Y  under stratified random sampling is given by 

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 is the stratum 

weight and hy  is the sample mean of the study variable in stratum h. The variance of the unbiased estimator is 
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 is sampling fraction in stratum h, hn  is a sample size in stratum  h and 

2
yhS  is the variance of the study variable in stratum h. There are two types of ratio estimators in stratified random 

sampling, namely combined and separate ratio estimators.  

The combined ratio estimator is given by  st
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y
y X

x
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x W x  is an unbiased estimator of the 

population mean X  and hx  is the sample mean of auxiliary variable in stratum h (Cochran, 1977). The 

approximate mean squared error of the combined ratio estimator is  
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where  YR
X

is the population ratio, 2
xhS  is the variance of auxiliary variable in stratum h and xyhS  is the 

covariance between auxiliary and study variables in stratum h. The approximate bias of the combined ratio 
estimator is 
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The separate ratio estimator is given by 



L

h h
RS h

h 1 h

y X
y W

x
. The approximate MSE of the separate ratio 

estimator can be given by 
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where  h
h

h

Y
R

X
 is the population ratio in stratum h. The approximate bias of the separate ratio estimator is 
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Kadilar and Cingi (2003) have proposed several combined ratio estimators. The simplest one based on the 

Sissodia and Dwivedi (1981) estimator is defined as 
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 where xhC  is the 

coefficient of variation of the auxiliary variable in stratum h. The MSE and bias of this estimator are 
approximated as follows: 
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Kadilar and Cingi (2005) have improved the combined ratio estimator in stratified random sampling based on the 
estimator introduced by Prasad (1989). However, these estimators depend on several unknown parameters and 
therefore aredifficult to use.  

In Sections 2 and 3, the ratio estimators based on the coefficient of variation and correlation in simple random 
sampling and stratified random sampling are introduced, respectively. The approximate bias and MSE of the 
estimator are derived. An estimator of the MSE is given. The sample size estimation and an optimal allocation of 
sample size in stratified random sampling is presented. The comparison of the efficiency between the proposed 
estimator and unbiased estimator is theoretically provided. Hypothetical populations are used to compare the 
properties of the presented estimators with the existing ones. 

2. Estimation in Simple Random Sampling 
2.1 Parameter Estimation 

Consider the following ratio estimator for the population mean of the study variable, 
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where c  is a real constant to be determined such that the  cMSE y is minimized. Note that when c  is equal 

to 0, this estimator is reduced to the usual ratio estimator and when c  is equal to xC  this estimator become 

the estimator of Sissodia and Dwivedi (1981). To obtain the MSE and bias of the estimator (2.1), let 
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where 
c
YR
X c

. Similarly, Taylor’s formula can be used to approximate MSE of the estimator as 
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Minimizing (2.3) with respect to c , we get the optimum value of c  as   
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S
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for c  in (2.1), (2.2) and (2.3) and using algebra, we obtain the optimum estimator, its bias and MSE as follows, 
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    c*B y 0 ,           (2.5) 
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 Note that the optimum estimator is almost unbiased and its MSE is always smaller than the variance of the 
unbiased estimator. In addition, the optimum estimator can be applied for both populations with positive and 
negative coefficient of correlation. For a sample estimate of the MSE, one can substitute the sample estimate of 
2
yS which gives 

     
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2 2
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1 fˆMSE y s 1
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,         (2.7) 

where 2
ys  is the sample variance of the study variable. 

2.2 Sample Size Estimation 

Sample size estimation is one of the important aspects in sample surveys. If the sample size is too small, the 
sampling error may be too large. However, too large sample size implies a waste of resources. We would like to 
specify a sample size that is sufficiently large to ensure a high probability that the estimate closes to the 

parameter. Under simple random sampling, the population mean of the study variable  Y  is estimated with the 

optimum estimator c*y . To obtain the desired sample size, one can specify the margin of error d  and the 

probability   such that  c*P y Y d    . Under some technical conditions as shown in Scott and Wu 

(1981) and Hajek (1960), we can show that c*y  is asymptotically normal distributed with mean Y  and 

variance  c*MSE y . To obtain the absolute precision, we can find a value of n  that satisfies 

 c* / 2d / MSE y z  where 2/z  denotes the upper 2 /  point of the standard normal distribution. Solving 

for n, we have 
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  . If the population size N is large relative to the sample size n, the formula of the 

sample size reduces to 0n .   
 
2.3 Comparison of Efficiency 

In this section, the properties of the estimators in simple random sampling are compared.  The relative 
efficiency of the optimum estimator and unbiased estimator is considered as follows: 
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This shows that the optimum estimator is always more efficient than the unbiased estimator because 
20 1   . 

The efficiency depends on the coefficient of correlation:if the coefficient of correlation increases then the 
efficiency also increases. 
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To compare the properties of the optimum estimator with the others, we consider hypothetical populations with 
vary characteristics. In this work, the coefficients of correlation in the populations are   0.1, 0.2, , 0.9 . In 

each population, the coefficients of variations are 0 2xC . , 0 2yC .  and the population means 5 000X , , 

5 000Y , . With varying sample sizes, the biases and MSEs of the estimators are given in Table 1 and Table 2, 
respectively. The biases and MSEs are computed by the formulas in the previous sections. 
In Table 1, as expected, the absolute bias of the unbiased and optimum ratio estimators are always equal to 0. 
The estimator Sy  has the largest absolute bias among the compared estimators. The bias of the estimator Sy  

is negative because the estimator is constructed by using a constant in which its value less than 1 multiplying the 
unbiased estimator. The bias of the estimator Sy  does not depend on the coefficient of correlation. Observe that 

the absolute biases of the estimator SDy  are smaller than of the estimator Ry . Given a sample size, when the 

coefficient of correlation increases the absolute bias of the two estimators Ry  and SDy  decrease. Given a 

coefficient of correlation, the absolute bias of Sy , Ry  and SDy  decrease when the sample size increases. 

Table 2 shows that the optimum ratio estimator has smallest MSE among the compared estimators. The MSEs of 
the two estimators y  and Sy  do not depend on the coefficient of correlation. When 0 5  .  the MSEs of the 

two estimators Ry  and SDy  are less than those of the unbiased estimator. Given a sample size, when the 

coefficient of correlation increases the MSEs of the three estimators Ry , SDy  and c*y  decrease. Given a 

coefficient of correlation, the MSEs of all estimators decrease when the sample size increases. 
 
Table 1. Biases of the estimators in simple random sampling 

n    B y   RB y   SDB y   SB y   c*B y  

30 

0.1 0 5.9964 5.9961 -6.6538 0 
0.2 0 5.3301 5.3299 -6.6538 0 
0.3 0 4.6639 4.6636 -6.6538 0 
0.4 0 3.9976 3.9973 -6.6538 0 
0.5 0 3.3313 3.3311 -6.6538 0 
0.6 0 2.6651 2.6648 -6.6538 0 
0.7 0 1.9988 1.9985 -6.6538 0 
0.8 0 1.3325 1.3323 -6.6538 0 
0.9 0 0.6663 0.6660 -6.6538 0 

50 

0.1 0 3.5964 3.5962 -3.9928 0 
0.2 0 3.1968 3.1966 -3.9928 0 
0.3 0 2.7972 2.7970 -3.9928 0 
0.4 0 2.3976 2.3974 -3.9928 0 
0.5 0 1.9980 1.9978 -3.9928 0 
0.6 0 1.5984 1.5982 -3.9928 0 
0.7 0 1.1988 1.1986 -3.9928 0 
0.8 0 0.7992 0.7990 -3.9928 0 
0.9 0 0.3996 0.3994 -3.9928 0 

100 

0.1 0 1.7964 1.7963 -1.9952 0 
0.2 0 1.5968 1.5967 -1.9952 0 
0.3 0 1.3972 1.3971 -1.9952 0 
0.4 0 1.1976 1.1975 -1.9952 0 
0.5 0 0.9980 0.9979 -1.9952 0 
0.6 0 0.7984 0.7983 -1.9952 0 
0.7 0 0.5988 0.5987 -1.9952 0 
0.8 0 0.3992 0.3991 -1.9952 0 
0.9 0 0.1996 0.1995 -1.9952 0 
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Table 2. MSEs of the estimators in simple random sampling 

n    MSE y   RMSE y  SDMSE y  SMSE y   c*MSE y  

30 

0.1 33313.33 59964.00 59961.60 33269.00 32980.20 
0.2 33313.33 53301.33 53299.20 33269.00 31980.80 
0.3 33313.33 46638.67 46636.80 33269.00 30315.13 
0.4 33313.33 39976.00 39974.40 33269.00 27983.20 
0.5 33313.33 33313.33 33312.00 33269.00 24985.00 
0.6 33313.33 26650.67 26649.60 33269.00 21320.53 
0.7 33313.33 19988.00 19987.20 33269.00 16989.80 
0.8 33313.33 13325.33 13324.80 33269.00 11992.80 
0.9 33313.33 6662.67 6662.40 33269.00 6329.53 

50 

0.1 19980.00 35964.00 35962.56 19964.04 19780.20 
0.2 19980.00 31968.00 31966.72 19964.04 19180.80 
0.3 19980.00 27972.00 27970.88 19964.04 18181.80 
0.4 19980.00 23976.00 23975.04 19964.04 16783.20 
0.5 19980.00 19980.00 19979.20 19964.04 14985.00 
0.6 19980.00 15984.00 15983.36 19964.04 12787.20 
0.7 19980.00 11988.00 11987.52 19964.04 10189.80 
0.8 19980.00 7992.00 7991.68 19964.04 7192.80 
0.9 19980.00 3996.00 3995.84 19964.04 3796.20 

100 

0.1 9980.00 17964.00 17963.28 9976.02 9880.20 
0.2 9980.00 15968.00 15967.36 9976.02 9580.80 
0.3 9980.00 13972.00 13971.44 9976.02 9081.80 
0.4 9980.00 11976.00 11975.52 9976.02 8383.20 
0.5 9980.00 9980.00 9979.60 9976.02 7485.00 
0.6 9980.00 7984.00 7983.68 9976.02 6387.20 
0.7 9980.00 5988.00 5987.76 9976.02 5089.80 
0.8 9980.00 3992.00 3991.84 9976.02 3592.80 
0.9 9980.00 1996.00 1995.92 9976.02 1896.20 

 
3. Estimation in Stratified Random Sampling 
3.1 Parameter Estimation 

In stratified random sampling, when hX , xhC  , y hC  and xh  in stratum h are known, the separate ratio 

estimator can be modified as  

  


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h h xh

RS_C h
h 1 yh h h h h xh

y X C
y W

C x X X C
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Since this estimator is constructed from the optimum ratio estimator, we call this estimator “optimum separate 
ratio estimator”. To obtain the MSE and bias of the optimum separate ratio estimator, applying the MSE and bias 

of 
 




h h xh
c*h

h xh

y X C
y

x C
 under simple random sampling to draw in stratum h,yields 

   RS_CB y 0 ,          (3.2) 

    
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2 2 2
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h 1
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For estimating the  RS_CMSE y , we substitute the sample estimates to obtain 
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   
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h 1
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Note that the bias of the optimum separate ratio estimator is the cumulative bias of an optimum ratio estimate in 

each stratum which closes to zero. In addition, we found that the MSE of the estimator is also smaller than the 

variance of the unbiased estimator in (1.8). 

3.2 Optimum Sample Size Allocation 
Given a total sample size n and using the optimum separate ratio estimator, one may choose how to allocate the 
sample size among the L strata. In this section, the allocation scheme which minimizes the MSE of the estimator 
by fixing the total sample size is considered. That is, we need the values of 1 2  Ln , n , , n  which minimize 
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Thus, the optimum scheme allocates larger sample sizes to strata with larger variances and larger stratum sizes 
but smaller sample sizes to strata with larger coefficients of correlation. 

3.3 Sample Size Estimation 

The formula (3.5) gives hn  in terms of n , but in practice, we do not yet know what value of n  is. This 

section presents a formula for the determination of n  under the optimum sample size allocation. It is assumed 
that the optimum separate ratio estimate has a specified mean squared error M . When hn , hN  and h hN n  

are all sufficient large and the technical conditions in Scott and Wu (1981) hold, we can show that the estimator 

RS_Cy has also the asymptotic normal distribution. If the margin of error d  has been given, then 
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Solving for n, we have
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3.4 Comparison of Efficiency 

In this section, we compare the properties of the proposed optimum separate ratio estimator with the existing 
ones in stratified random sampling. The relative efficiency of the optimum separate ratio estimator and unbiased 
estimator is  

  
 

2 2

1

2 2 2

1

1








  





L

h h yh
h

st RS _C L

h h yh h
h

W S
e y , y

W S
.         (3.7) 

This shows that the optimum separate ratio estimator is always more efficient than the unbiased estimator. The 
efficiency depends on the coefficient of correlation in stratum. If the correlation coefficient increases then the 
efficiency also increases. 
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To compare the properties of the optimum separate ratio estimator with the other estimators, we consider the 
following hypothetical populations. Each population consists of N = 50,000 units and is divided into L = 2 strata 
of which sizes are 1N 20, 000  and 2N 30, 000 . The coefficients of variations are  x1 y 1C C 0.2  and 

 x 2 y 2C C 0.3 . The population means are given by  1 1X Y 500  and  2 2X Y 1, 000 . The coefficients of 

correlations are   h 0.1, 0.2, , 0.9 . We set the total sample size n 150  with three allocations, namely equal 

allocation h
nn
L

, proportional allocation  h
h

nN
n

N
 and optimal allocation as in (3.5). The biases and 

MSEs of the estimators are given in Table 3 and Table 4, respectively. The biases and MSEs are computed by the 
formulas in the above sections. 

In Table 3, the absolute biases of the unbiased and optimum separate ratio estimators are always equal to 0. The 
absolute biasof the estimator RSy  is smallest among the compared estimators. The absolute bias of the 

estimator KCy is smaller than that of the estimator RCy . Given an sample size allocation, when the coefficient 

of correlation increases the absolute biases of the three estimators RCy , RSy , and KCy decrease. Using the 

optimum allocation, the absolute biases of the estimators RCy , RSy  and KCy are smallest among the three 

allocations. 

Table 4 presents that the optimum separate ratio estimator gives the smallest MSE among the compared 
estimators. Observe that the MSE of the unbiased estimator sty  does not depend on the coefficient of 

correlation because it does not use the information of the auxillary variable. When 0 5 h . , the MSEs of the 

estimators RCy , RSy  and KCy  are less than that of the unbiased estimator. Given an sample size allocation, 

when the coefficient of correlation increases, the MSEs of the estimators RCy , RSy ,  KCy  and RS _Cy  

decrease. The MSEs of all estimators are smallest under the optimum allocation. 
 

Table 3. Biases of the estimators in stratified random sampling 

Allocation 1n  2n  1  2     stB y  RCB y  RSB y  KCB y   RS _ CB y  

equal 75 75 

0.1 0.1 0.56 0 0.5087 0.4261 0.5083 0 

0.2 0.2 0.61 0 0.4522 0.3787 0.4518 0 

0.3 0.3 0.66 0 0.3957 0.3314 0.3953 0 

0.4 0.4 0.71 0 0.3391 0.2841 0.3388 0 

0.5 0.5 0.75 0 0.2826 0.2367 0.2823 0 

0.6 0.6 0.80 0 0.2261 0.1894 0.2258 0 

0.7 0.7 0.85 0 0.1696 0.1420 0.1693 0 

0.8 0.8 0.90 0 0.1130 0.0947 0.1128 0 

0.9 0.9 0.95 0 0.0565 0.0473 0.0563 0 

proportion 60 90 

0.1 0.1 0.56 0 0.4337 0.3709 0.4334 0 

0.2 0.2 0.61 0 0.3855 0.3297 0.3852 0 

0.3 0.3 0.66 0 0.3373 0.2885 0.3371 0 

0.4 0.4 0.71 0 0.2891 0.2473 0.2889 0 

0.5 0.5 0.75 0 0.2409 0.2060 0.2407 0 

0.6 0.6 0.80 0 0.1928 0.1648 0.1925 0 

0.7 0.7 0.85 0 0.1446 0.1236 0.1444 0 

0.8 0.8 0.90 0 0.4337 0.3709 0.4334 0 

0.9 0.9 0.95 0 0.3855 0.3297 0.3852 0 

optimum 27 123 

0.1 0.1 0.56 0 0.3617 0.3421 0.3614 0 

0.2 0.2 0.61 0 0.3215 0.3041 0.3213 0 

0.3 0.3 0.66 0 0.2813 0.2661 0.2811 0 

0.4 0.4 0.71 0 0.2411 0.2281 0.2409 0 
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0.5 0.5 0.75 0 0.2009 0.1900 0.2007 0 

0.6 0.6 0.80 0 0.1608 0.1520 0.1606 0 

0.7 0.7 0.85 0 0.1206 0.1140 0.1204 0 

0.8 0.8 0.90 0 0.0804 0.0760 0.0802 0 

0.9 0.9 0.95 0 0.0402 0.0380 0.0400 0 
  is the coefficient of correlation in the whole population. 

 

Table 4. MSE of the estimators in stratified random sampling 

Allocation 
1n  2n 1  2     stMSE y  RCMSE y  RSMSE y  KCMSE y   RS_CMSE y

equal 75 75 

0.1 0.1 0.56 452.17 813.91 813.91 813.65 447.65 
0.2 0.2 0.61 452.17 723.48 723.48 723.24 434.09 
0.3 0.3 0.66 452.17 633.04 633.04 632.84 411.48 
0.4 0.4 0.71 452.17 542.61 542.61 542.43 379.83 
0.5 0.5 0.75 452.17 452.17 452.17 452.03 339.13 
0.6 0.6 0.80 452.17 361.74 361.74 361.62 289.39 
0.7 0.7 0.85 452.17 271.30 271.30 271.22 230.61 
0.8 0.8 0.90 452.17 180.87 180.87 180.81 162.78 

0.9 0.9 0.95 452.17 90.43 90.43 90.41 85.91 

proportion 60 90 

0.1 0.1 0.56 385.51 693.91 693.91 693.69 381.65 
0.2 0.2 0.61 385.51 616.81 616.81 616.61 370.09 
0.3 0.3 0.66 385.51 539.71 539.71 539.53 350.81 
0.4 0.4 0.71 385.51 462.61 462.61 462.46 323.83 
0.5 0.5 0.75 385.51 385.51 385.51 385.38 289.13 
0.6 0.6 0.80 385.51 308.41 308.41 308.31 246.72 
0.7 0.7 0.85 385.51 231.30 231.30 231.23 196.61 
0.8 0.8 0.90 385.51 154.20 154.20 154.15 138.78 
0.9 0.9 0.95 385.51 77.10 77.10 77.08 73.25 

optimum 27 123

0.1 0.1 0.56 321.51 578.71 578.71 578.52 318.29 
0.2 0.2 0.61 321.51 514.41 514.41 514.24 308.65 
0.3 0.3 0.66 321.51 450.11 450.11 449.96 292.57 
0.4 0.4 0.71 321.51 385.81 385.81 385.68 270.07 
0.5 0.5 0.75 321.51 321.51 321.51 321.40 241.13 
0.6 0.6 0.80 321.51 257.21 257.21 257.12 205.76 
0.7 0.7 0.85 321.51 192.90 192.90 192.84 163.97 
0.8 0.8 0.90 321.51 128.60 128.60 128.56 115.74 
0.9 0.9 0.95 321.51 64.30 64.30 64.28 61.09 

  is the coefficient of correlation in the whole population. 

 

4. Discussion 
In simple random sampling, the optimum ratio estimator and its variance estimate depend on the coefficient of 
variation, the coefficient of correlation and the mean of the auxiliary variable in the whole population. Similarly, 
the optimum separate ratio estimator and its variance estimate are in terms of the coefficients of variation, the 
coefficient of correlation and the means of the auxiliary variable in all strata. In practice, sample estimates of 
these parameters may be used to substitute in the formulas of these estimates.  

In simple random sampling, the relative efficiency of the optimum ratio estimator and the unbiased estimator 
depends on the coefficient of correlation  . When the coefficient of correlation between the study and auxillary 
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variable is weak, then the relative efficiency will be low so that the unbiased estimator is almost as good as the 
ratio estimators. For example, if 0 2  . , then   1 042c*e y , y . . This means that if we increase the sample size 

about 4.2%, the unbiased estimator will have the most efficiency among the estimators in the class of
       

c
x cy y : c
X c

. Therefore, in case of 0 2  .  we suggest using the unbiased estimator because it 

uses only the information of the study variable and we do not need to collect the data of the auxillary variables. 
In stratified random sampling, when   0 2 hMax . , we also recommend the unbiased estimator.  

For future studies, we can consider applying the ratio estimator in adaptive sampling schemes as suggested by 
Thompson (1990) and Sangngam (2013) for.  
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