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Abstract

This paper introduces ratio estimators of the population mean using the coefficient of variation of study
variable and auxiliary variables together with the coefficient of correlation between the study and auxiliary
variables under simple random sampling and stratified random sampling. These ratio estimators are almost
unbiased. The mean square errors of the estimators and their estimators are given. Sample size estimation in both
sampling designs are presented. An optimal sample size allocation in stratified random sampling is also
suggested. Based on theoretical study, it can be shown that these ratio estimators have smaller MSE than the
unbiased estimators. Moreover, the empirical study indicates that these ratio estimators have smallest MSE
compared to the existing ones.

Keywords: ratio estimator, sample size estimation, coefficient of variation, coefficient of correlation
1. Introduction
Consider a population of N units with observations (xi .Y, ) for i=1,2,...,N where y, isavalue of study

variable and x; is a value of auxiliary variable. Under simple random sampling without replacement, an

. . . s 1< . _ 1 .
unbiased estimator of the population mean Y = _ZYi is the sample mean y = _ZYi . The variance of the
i=1 n o
unbiased estimator is

V(7)=——¢. (1.1)
P
where f=-- and S =Li( ; —S_()Z
N "N Vi '

A common ratio estimator is y, =y— where X and X are the population and sample means of the
X

auxiliary variable, respectively. The efficiency of the ratio estimator depends on the coefficient of variation of
auxiliary variable (CX) and coefficient of variation of study variable (C ) . Murthy (1964) has suggested that

v

if p> 2CX , the ratio estimator performs better than the unbiased estimator where p is the correlation

coefficient between x and y . The approximate bias and mean square error (MSE) of the ratio estimator are as

follows:
1-f( R 1
B(y,)=—] =8> -=S5 1.2
(h) N (X X xyj’ (1.2)
MSE(7, ) = 1-f f(si +R%S* —2RS_ ) , (1.3)
q y
where R=z, s? =Li(x —)_()2 and S =—1 ib —S_()(x. —)_(). When the C_ is known,
X X N -1 — i Xy N -1 — i i x
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o . . — X+C
Sissodia and Dwivedi (1981) has proposed a modified ratio estimator, y, =y —

* . The approximate bias

and MSE of the estimator are

_\ 1-f(R, 1
B(ySD)zT( >_<\ Sf _§S\‘j’ (1'4)
MSE(}TSD)=1n;f(Sf, +RSI-2R S, ), (1.5)

where R_= <ic Sampath (2005) used the coefficient of variation of the study variable to improve the
+C

-1
unbiased estimator as y = [l + ﬂcf ] y . The approximate bias and MSE of this estimator are

P

_ 1-f ,)' = =
B(y,)=|1+—C] | Y-V, (1.6)
n
-1
1-f 1-f
MSE(y) = ﬁ[** C?j- (1.7)
n . n )

In addition, there are several authors, such as Upadhyaya and Singh (1999), Singh and Tailor (2003), who have
developed various ratio estimators under simple random sampling.

If the study variable has different mean values in different subpopulations, it is advantageous to draw a sample
by stratified random sampling. In stratified sampling, a population is partitioned into L strata. A stratum h
contains N, units with observations (xhi,y hi) where h=12,...,L and i=L12,...,N, . An unbiased

h

_ L
estimator of Y under stratified random sampling is given by y_ = thy_’h where W, = is the stratum

h=1
weight and y, is the sample mean of the study variable in stratum h. The variance of the unbiased estimator is

V(v.) Z\W VoSo s (1.8)

where vy, = /nh , £ :—h is sampling fraction in stratum h, n, is a sample size in stratum h and
h

S?. is the variance of the study variable in stratum h. There are two types of ratio estimators in stratified random

sampling, namely combined and separate ratio estimators.
T L
The combined ratio estimator is given by y,. = ¥X , where X = Z\X/h§h is an unbiased estimator of the

XS(
population mean X and X, 1is the sample mean of auxiliary variable in stratum h (Cochran, 1977). The
approximate mean squared error of the combined ratio estimator is

MSE(7 () Z\X/ v, (S5, +RS%, —2RS ), (1.9)

where R =—is the population ratio, S, is the variance of auxiliary variable in stratum h and S, is the
X ) )

covariance between auxiliary and study variables in stratum h. The approximate bias of the combined ratio
estimator is

1
B(Vic) ZW vh[ ——smj- (1.10)
X o
. —
The separate ratio estimator is given by y . = Z
h=1
estimator can be given by
I
MSE(?RS)=ZW}?’Y}1 (th +RiS‘ ZRth‘h) (1-11)
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]

h

where R, = is the population ratio in stratum h. The approximate bias of the separate ratio estimator is

><||

h

thyh{ =8’ - ! sx)h]. (1.12)
h

X

Kadilar and Cingi (2003) have proposed several combined ratio estimators. The simplest one based on the

Y, (%, +C,)

Sissodia and Dwivedi (1981) estimator is defined as y, . =y =%

D W, (5, +C,)

h=1
coefficient of variation of the auxiliary variable in stratum h. The MSE and bias of this estimator are
approximated as follows:

where C_ is the

MSE(7 ) Z\X/ T (S5 +RES —2R (S ) (1.13)

KC*xh KC “xyh

ZW yh[ KCQ2 — ! sxyh], (1.14)

I\C X KC

Y

St

iwh(ih +C,,)
h=1

Kadilar and Cingi (2005) have improved the combined ratio estimator in stratified random sampling based on the
estimator introduced by Prasad (1989). However, these estimators depend on several unknown parameters and
therefore aredifficult to use.

Y
where R, . ===
- X

In Sections 2 and 3, the ratio estimators based on the coefficient of variation and correlation in simple random
sampling and stratified random sampling are introduced, respectively. The approximate bias and MSE of the
estimator are derived. An estimator of the MSE is given. The sample size estimation and an optimal allocation of
sample size in stratified random sampling is presented. The comparison of the efficiency between the proposed
estimator and unbiased estimator is theoretically provided. Hypothetical populations are used to compare the
properties of the presented estimators with the existing ones.

2. Estimation in Simple Random Sampling
2.1 Parameter Estimation

Consider the following ratio estimator for the population mean of the study variable,

X+c

X+c

V.=V 2.1)

where ¢ is a real constant to be determined such that the MSE(y, ) is minimized. Note that when ¢ is equal

to 0, this estimator is reduced to the usual ratio estimator and when ¢ is equal to C_ this estimator become

. . . . . . . -Y
the estimator of Sissodia and Dwivedi (1981). To obtain the MSE and bias of the estimator (2.1), let ¢, = YT

___ V y C _’_7
and ezzx_:i. It can be shown that E(e,)=0, E(e,)=0, E(ef): 3_552)’ E(elez):% and
E(ei):—v(x) . The estimator y_ can be written as y_= (1+e )(“'62)_1' Using Taylor series

— 2
(X + c)
approximation, we obtain y_= S_{(l +e —e,tel—ee, + ) . When the terms of degree greater than two are

ignored, we get the approximate bias of the estimator y_ as

.\ (1-f) RS S,
B(”)"( n j (Koc) (Xee)| @2
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where R, = < . Similarly, Taylor’s formula can be used to approximate MSE of the estimator as
+c
_ 1-f/., 22
MSE(7,)=——(S; +RIS!-2R S, ). (2.3)
n )
o : : L YSD o Lo
Minimizing (2.3) with respect to ¢, we get the optimum value of ¢ as c=c =—=—X . Substituting ¢

xy

for ¢ in(2.1), (2.2) and (2.3) and using algebra, we obtain the optimum estimator, its bias and MSE as follows,

. XC,

Yo C,p(x-X)+Xc,’ @4
B(y.)=0, (255)

MSE( . ) = Msf (1-p). (2.6)

Note that the optimum estimator is almost unbiased and its MSE is always smaller than the variance of the
unbiased estimator. In addition, the optimum estimator can be applied for both populations with positive and
negative coefficient of correlation. For a sample estimate of the MSE, one can substitute the sample estimate of
S? which gives

e 1-f
MSE(ng)=( . )55 (1-p°). (2.7)
where sf is the sample variance of the study variable.
2.2 Sample Size Estimation

Sample size estimation is one of the important aspects in sample surveys. If the sample size is too small, the
sampling error may be too large. However, too large sample size implies a waste of resources. We would like to
specify a sample size that is sufficiently large to ensure a high probability that the estimate closes to the

parameter. Under simple random sampling, the population mean of the study variable (S_{) is estimated with the

optimum estimator y_ . To obtain the desired sample size, one can specify the margin of error d and the
probability o such that P(|§C* —S_('| Zd) =o . Under some technical conditions as shown in Scott and Wu

(1981) and Hajek (1960), we can show that y_. is asymptotically normal distributed with mean Y and
variance MSE(}TC*) . To obtain the absolute precision, we can find a value of n that satisfies
d/JMSE(y..)=2,, where z,, denotes theupper o /2 point of the standard normal distribution. Solving

for n, we have

n=—"o_ (2.8)

7S, (1—p2)
2

where n, = . If the population size N is large relative to the sample size n, the formula of the

d2

sample size reduces to n,, .

2.3 Comparison of Efficiency

In this section, the properties of the estimators in simple random sampling are compared. The relative
efficiency of the optimum estimator and unbiased estimator is considered as follows:
—\2
__ L _EBF-Y)
e(y,yc*)= — =1 - (2.9)
E(y.-Y) 1-p

2
This shows that the optimum estimator is always more efficient than the unbiased estimator because O<p<l .

The efficiency depends on the coefficient of correlation:if the coefficient of correlation increases then the
efficiency also increases.
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To compare the properties of the optimum estimator with the others, we consider hypothetical populations with
vary characteristics. In this work, the coefficients of correlation in the populations are p=0.1,0.2,...,0.9. In

each population, the coefficients of variations are C, =0.2, C =0.2 and the population means X =5,000,

Y =5,000. With varying sample sizes, the biases and MSEs of the estimators are given in Table 1 and Table 2,

respectively. The biases and MSEs are computed by the formulas in the previous sections.
In Table 1, as expected, the absolute bias of the unbiased and optimum ratio estimators are always equal to 0.
The estimator y, has the largest absolute bias among the compared estimators. The bias of the estimator v

is negative because the estimator is constructed by using a constant in which its value less than 1 multiplying the
unbiased estimator. The bias of the estimator y, does not depend on the coefficient of correlation. Observe that

the absolute biases of the estimator v, are smaller than of the estimator v, . Given a sample size, when the
coefficient of correlation increases the absolute bias of the two estimators y, and y,, decrease. Given a
coefficient of correlation, the absolute bias of y, y, and y,, decrease when the sample size increases.

Table 2 shows that the optimum ratio estimator has smallest MSE among the compared estimators. The MSEs of
the two estimators y and y, do not depend on the coefficient of correlation. When p>0.5 the MSEs of the

two estimators y, and y, are less than those of the unbiased estimator. Given a sample size, when the
coefficient of correlation increases the MSEs of the three estimators y,, v, and y_. decrease. Given a
coefficient of correlation, the MSEs of all estimators decrease when the sample size increases.

Table 1. Biases of the estimators in simple random sampling

n P B(?) B(?R) B(?SD) B(?ﬂ) B(?c*)
0.1 0 59964 59961 -6.6538 0
0.2 0 5.3301  5.3299 -6.6538 0
0.3 0 4.6639 4.6636 -6.6538 0
0.4 0 39976 3.9973 -6.6538 0
30 0.5 0 33313  3.3311 -6.6538 0
0.6 0 2.6651 2.6648 -6.6538 0
0.7 0 1.9988 1.9985 -6.6538 0
0.8 0 1.3325 1.3323 -6.6538 0
0.9 0 0.6663 0.6660 -6.6538 0
0.1 0 3.5964 3.5962 -3.9928 0
0.2 0 3.1968 3.1966 -3.9928 0
0.3 0 27972  2.7970 -3.9928 0
0.4 0 23976 23974 -3.9928 0
50 0.5 0 1.9980 1.9978 -3.9928 0
0.6 0 1.5984 1.5982 -3.9928 0
0.7 0 1.1988 1.1986 -3.9928 0
0.8 0 0.7992  0.7990 -3.9928 0
0.9 0 0.3996 0.3994 -3.9928 0
0.1 0 1.7964 1.7963 -1.9952 0
0.2 0 1.5968 1.5967 -1.9952 0
0.3 0 1.3972  1.3971 -1.9952 0
0.4 0 1.1976  1.1975 -19952 0
100 0.5 0 0.9980 0.9979 -19952 0
0.6 0 0.7984 0.7983 -1.9952 0
0.7 0 0.5988 0.5987 -1.9952 0
0.8 0 0.3992  0.3991 -19952 O
0.9 0 0.1996 0.1995 -1.9952 0
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Table 2. MSEs of the estimators in simple random sampling

n P MSE(Y)  MSE(Fy) MSE(Vy,) MSE(Y) MSE(F..)
0.1 33313.33 59964.00 59961.60 33269.00 32980.20
0.2 33313.33 53301.33 53299.20 33269.00 31980.80
0.3 33313.33 46638.67 46636.80 33269.00 30315.13
0.4 33313.33 39976.00 39974.40 33269.00 27983.20
30 0.5 33313.33 33313.33 33312.00 33269.00 24985.00
0.6 33313.33 26650.67 26649.60 33269.00 21320.53
0.7 33313.33 19988.00 19987.20 33269.00 16989.80
0.8 33313.33 13325.33 13324.80 33269.00 11992.80
0.9 33313.33 6662.67 6662.40  33269.00 6329.53
0.1 19980.00  35964.00 35962.56 19964.04 19780.20
0.2 19980.00  31968.00 31966.72 19964.04 19180.80
0.3 19980.00  27972.00 27970.88 19964.04 18181.80
04 19980.00  23976.00 23975.04 19964.04 16783.20
50 0.5 19980.00 19980.00 19979.20 19964.04 14985.00
0.6 19980.00 15984.00 15983.36 19964.04 12787.20
0.7 19980.00 11988.00 11987.52 19964.04 10189.80
0.8 19980.00  7992.00 7991.68  19964.04 7192.80
0.9 19980.00  3996.00 3995.84  19964.04 3796.20
0.1 9980.00 17964.00 17963.28 9976.02 9880.20
0.2 9980.00 15968.00 15967.36 9976.02 9580.80
0.3 9980.00 13972.00 13971.44 9976.02 9081.80
0.4 9980.00 11976.00 11975.52 9976.02 8383.20
100 0.5 9980.00 9980.00 9979.60  9976.02 7485.00
0.6 9980.00 7984.00 7983.68  9976.02 6387.20
0.7 9980.00 5988.00 5987.76  9976.02 5089.80
0.8 9980.00 3992.00 3991.84 9976.02 3592.80
0.9 9980.00 1996.00 199592  9976.02 1896.20

3. Estimation in Stratified Random Sampling
3.1 Parameter Estimation
In stratified random sampling, when ih, C, , C, and p_, in stratum h are known, the separate ratio

estimator can be modified as

_ . 7,.X,C,
Yrs_c :th - L . 3.D
= CLe,(x -X,)+X,C,,

Since this estimator is constructed from the optimum ratio estimator, we call this estimator “optimum separate
ratio estimator”. To obtain the MSE and bias of the optimum separate ratio estimator, applying the MSE and bias

}_7h (}_(h +th)

of y.,=—=
" Xh+th

under simple random sampling to draw in stratum h,yields
B(y_YRS_C ) =0, 3.2)

MSE(}TRS,C ) = iWhZYhS)Z'h (1 - pi ) ’ (3'3)
h=1

For estimating the MSE(}TRLC ) , we substitute the sample estimates to obtain
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MASE(Y_YRSJ: ) = ZL:WhZ,YhS)th (1 -pr ) : (3.4)
h=t

Note that the bias of the optimum separate ratio estimator is the cumulative bias of an optimum ratio estimate in
each stratum which closes to zero. In addition, we found that the MSE of the estimator is also smaller than the
variance of the unbiased estimator in (1.8).

3.2 Optimum Sample Size Allocation

Given a total sample size n and using the optimum separate ratio estimator, one may choose how to allocate the
sample size among the L strata. In this section, the allocation scheme which minimizes the MSE of the estimator
by fixing the total sample size is considered. That is, we need the values of n,,n,,...,n, which minimize

L L

MSE(?I{LC):Z\X/thS}Z,h (1 —pi) subject to the condition n = Znh . The sample size allocated to each
h=1 h=1

stratum is

NhSh 1_pi

=nL—
zNhSh\ll_pi
h=1

Thus, the optimum scheme allocates larger sample sizes to strata with larger variances and larger stratum sizes
but smaller sample sizes to strata with larger coefficients of correlation.

a h=12,...L. (3.5)

h

3.3 Sample Size Estimation

The formula (3.5) gives n, in terms of n, but in practice, we do not yet know what value of n is. This
section presents a formula for the determination of n under the optimum sample size allocation. It is assumed
that the optimum separate ratio estimate has a specified mean squared error M. When n, ,N, and N, —n,
are all sufficient large and the technical conditions in Scott and Wu (1981) hold, we can show that the estimator
Yrs c has also the asymptotic normal distribution. If the margin of error d has been given, then

thh 1 _pﬁ

2 — .
M=(d/z,,) .Let n, =nw,, where w, =———————_So, the mean square error of y . is

zwhsh\/ 1 _pﬁ
h=1

Solving for n, we have

n= , 3.6)

2

7z L
1+ N“(/izz ZWhSﬁ,ll—pﬁ
h=1

L

Zi/z [Z W, S, MJ
h=1 =

3.4 Comparison of Efficiency

In this section, we compare the properties of the proposed optimum separate ratio estimator with the existing

ones in stratified random sampling. The relative efficiency of the optimum separate ratio estimator and unbiased
estimator is

2

where n, =

L
Z th Yhs)z'h
h=1

ithYhS—‘z'h (l - pﬁ )
h=1

This shows that the optimum separate ratio estimator is always more efficient than the unbiased estimator. The
efficiency depends on the coefficient of correlation in stratum. If the correlation coefficient increases then the
efficiency also increases.

(3.7)

e(?w?ks_c =
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To compare the properties of the optimum separate ratio estimator with the other estimators, we consider the
following hypothetical populations. Each population consists of N = 50,000 units and is divided into L = 2 strata
of which sizes are N, =20,000 and N, =30,000. The coefficients of variations are C, =C , =0.2 and

C,, =C,, =0.3. The population means are given by }_(1 = S_{l =500 and }_(2 = 3_{2 =1,000. The coefficients of
correlations are p, =0.1,0.2,...,0.9 . We set the total sample size n =150 with three allocations, namely equal

allocation n, =%, proportional allocation n, = nNh and optimal allocation as in (3.5). The biases and

MSE:s of the estimators are given in Table 3 and Table 4, respectively. The biases and MSEs are computed by the
formulas in the above sections.

In Table 3, the absolute biases of the unbiased and optimum separate ratio estimators are always equal to 0. The
absolute biasof the estimator y,, is smallest among the compared estimators. The absolute bias of the

estimator . is smaller than that of the estimator y,.. Given an sample size allocation, when the coefficient
of correlation increases the absolute biases of the three estimators y,.., ygs, and y,. decrease. Using the
optimum allocation, the absolute biases of the estimators y.., ygs and y .. are smallest among the three
allocations.

Table 4 presents that the optimum separate ratio estimator gives the smallest MSE among the compared
estimators. Observe that the MSE of the unbiased estimator y_, does not depend on the coefficient of
correlation because it does not use the information of the auxillary variable. When p, > 0.5, the MSEs of the
estimators y.., yyzs and y.. are less than that of the unbiased estimator. Given an sample size allocation,
when the coefficient of correlation increases, the MSEs of the estimators y Ve and y

RC> YRS> RS_C

decrease. The MSEs of all estimators are smallest under the optimum allocation.

Table 3. Biases of the estimators in stratified random sampling

oy,

Allocation n, n, p, 0, p B
0.1 0.1 0.56
0.2 0.2 0.61
0.3 0.3 0.66
0.4 0.4 0.71
equal 75 75 0.5 0.5 0.75
0.6 0.6 0.80
0.7 0.7 0.85
0.8 0.8 0.90
0.9 0.9 0.95
0.1 0.1 0.56
0.2 0.2 0.61
0.3 0.3 0.66
0.4 0.4 0.71
proportion 60 90 0.5 0.5 0.75
0.6 0.6 0.80
0.7 0.7 0.85
0.8 0.8 0.90
0.9 0.9 0.95
0.1 0.1 0.56
0.2 0.2 0.61
0.3 0.3 0.66
0.4 0.4 0.71

) B(5) B(Te) BGw) bl )
0.5087 0.4261 0.5083 0

0.4522 0.3787 0.4518
0.3957 0.3314 0.3953
0.3391 0.2841 0.3388
0.2826 0.2367 0.2823
0.2261 0.1894 0.2258
0.1696 0.1420 0.1693
0.1130 0.0947 0.1128
0.0565 0.0473 0.0563
0.4337 0.3709 0.4334
0.3855 0.3297 0.3852
0.3373 0.2885 0.3371
0.2891 0.2473 0.2889
0.2409 0.2060 0.2407
0.1928 0.1648 0.1925
0.1446 0.1236 0.1444
0.4337 0.3709 0.4334
0.3855 0.3297 0.3852
0.3617 0.3421 0.3614
0.3215 0.3041 0.3213
0.2813 0.2661 0.2811
0.2411 0.2281 0.2409

=l

optimum 27 123

S O O OO O OO OO OO0 OO0 o0 o o o o o
S O O OO O O O O O O O o000 oo o o o o
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0.5 0.5 0.75 0 0.2009 0.1900 0.2007 0
0.6 0.6 0.80 0 0.1608 0.1520 0.1606 0
0.7 0.7 0.85 0 0.1206 0.1140 0.1204 0
0.8 0.8 0.90 0 0.0804 0.0760 0.0802 0
0.9 0.9 0.95 0 0.0402 0.0380 0.0400 0
p is the coefficient of correlation in the whole population.
Table 4. MSE of the estimators in stratified random sampling
Allocation n, n, P, P, p MSE(7,) MSE(V.) MSE(V,) MSE(V) MSE(Ta )
0.1 0.1 0.56 452.17 81391 81391 813.65 447.65
0.2 0.2 0.61 452,17 723.48 72348 723.24 434.09
03 0.3 0.66 452.17 633.04 633.04 632.84 411.48
04 0.4 0.71 452.17 542.61 542.61 54243 379.83
equal 75 75 05 0.5 0.75 452.17 452.17 452.17 452.03 339.13
0.6 0.6 0.80 452.17 361.74 361.74 361.62 289.39
0.7 0.7 0.85 452.17 271.30 271.30 271.22 230.61
0.8 0.8 0.90  452.17 180.87 180.87 180.81 162.78
0.9 0.9 0.95 452,17 9043 9043  90.41 85.91
0.1 0.1 0.56 385.51 69391 69391 693.69 381.65
0.2 0.2 0.61 385.51 616.81 616.81 616.61 370.09
0.3 0.3 0.66 385.51 539.71 539.71 539.53 350.81
04 0.4 0.71 385.51 462.61 462.61 46246 323.83
proportion 60 90 0.5 0.5 0.75 385.51 38551 38551 38538 289.13
0.6 0.6 0.80 385.51 30841 30841 30831 246.72
0.7 0.7 0.85 385.51 23130 23130 231.23 196.61
0.8 0.8 0.90 385.51 15420 15420 154.15 138.78
0.9 0.9 0.95 385.51 77.10 77.10 77.08  73.25
0.1 0.1 0.56 321.51 57871 57871 578.52 318.29
0.2 0.2 0.61 321.51 51441 51441 51424 308.65
0.3 0.3 0.66 321.51 450.11 450.11 44996 292.57
0.4 0.4 0.71 321.51 385.81 385.81 385.68 270.07
optimum 27 123 0.5 0.5 0.75 321.51  321.51 321.51 32140 241.13
0.6 0.6 0.80 321.51 25721 25721 257.12 205.76
0.7 0.7 0.85 321.51 19290 19290 192.84 163.97
0.8 0.8 0.90 321.51 128.60 128.60 128.56 115.74
0.9 0.9 0.95 321.51 6430 6430 6428 61.09

p is the coefficient of correlation in the whole population.

4. Discussion

In simple random sampling, the optimum ratio estimator and its variance estimate depend on the coefficient of
variation, the coefficient of correlation and the mean of the auxiliary variable in the whole population. Similarly,
the optimum separate ratio estimator and its variance estimate are in terms of the coefficients of variation, the
coefficient of correlation and the means of the auxiliary variable in all strata. In practice, sample estimates of
these parameters may be used to substitute in the formulas of these estimates.

In simple random sampling, the relative efficiency of the optimum ratio estimator and the unbiased estimator
depends on the coefficient of correlation p. When the coefficient of correlation between the study and auxillary
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variable is weak, then the relative efficiency will be low so that the unbiased estimator is almost as good as the
ratio estimators. For example, if p<0.2,then e(y,y_.)<1.042. This means that if we increase the sample size

about 4.2%, the unbiased estimator will have the most efficiency among the estimators in the class of

_  _X+tc . . . . .
{yc =y ;(_( i—o<c < oo} . Therefore, in case of p<0.2 we suggest using the unbiased estimator because it
+c

uses only the information of the study variable and we do not need to collect the data of the auxillary variables.
In stratified random sampling, when Max {p, } < 0.2, we also recommend the unbiased estimator.

For future studies, we can consider applying the ratio estimator in adaptive sampling schemes as suggested by
Thompson (1990) and Sangngam (2013) for.
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