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Abstract 

This paper examined a new model for solving mechanical problems of second-order linear Lagrangian systems, 
using the Hamilton-Jacobi formalism. Lagrangians linear in accelerations with coefficients given by functions of 
coordinates alone yield primary constraints. It is shown that the equations of motion can be obtained from the 
action integral and these equations are equivalent to the canonical method. 
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1. Introduction 

The canonical formalism for investigating singular systems has been developed by (Rabei & Guler, 1992; 
Pimentel & Teixeiria, 1996, 1998). A set of Hamilton-Jacobi partial differential equations was obtained and the 
equations of motion were written as total differential equations.  

The Hamilton-Jacobi treatment has been studied for singular Lagrangians (Rabei et al., 2004). The 
Hamilton-Jacobi functions in configuration space have been obtained by solving the HJPDEs. This has led to 
another approach for solving mechanical problems for these singular systems.  

Singular Lagrangians with linear velocities have been studied (Rabei et al., 2003) by using the canonical method. 
In this method, the integrable action was obtained directly without considering the total variation of constraints. 
In this paper, we wish to extend the model for second-order linear Lagrangian.  

More recently, the path integral quantization of Lagrangians with linear accelerations has been investigated 
(Hasan, 2014) by using the canonical method. It is shown that by calculating the integrable action and 
constructing the wave function, the quantization has been carried out.  

This paper is organized as follow. In Section 2, a new model of singular Lagrangian with linear acceleration is 
proposed. In Section 3, several illustrative examples are examined. The work closes with some concluding 
remarks in Section 4. 

2. The Model of Hamilton-Jacobi Formalism for Lagrangian with Linear Acceleration 

The general form of a second-order linear Lagrangian is  

 ( , , ) ( , ) ( , )i i i i j j i j jL q q q a q q q V q q       (2.1) 

The associated Euler-Lagrange equations 
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 (2.2) 

Have at most order three. Lagrangians linear in accelerations with coefficients given by functions of coordinates 
alone yield primary constraints. If )(),( qaqqa ii  , and let )(),( qVqqV  , then the general form of a 
second-order linear Lagrangian becomes 

 ( , , ) ( ) ( )i i i i j i jL q q q a q q V q     (2.3) 

The generalized momenta ip , i  conjugate to the generalized coordinates iq , iq , respectively: 
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Equations (2.4) and (2.5) become 

 , , , 0i i i i i i iH q q p H      ; 

  , , , 0i i i i i i iH q q p a       (2.6) 

 , , , 0p p
i i i i i i iH q q p p H     

  , , , 0p
i i i i i i iH q q p p b     (2.7) 

Equations (2.6) and (2.7) are called primary constraints (Dirac, 1950). 

The canonical Hamiltonian 
0H  is given by: 

 LqqpH iiii   0 ( ) ( )i j i jb q q V q    (2.8) 

The corresponding HJPDEs 
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The equations of motion are obtained as total differential equations follows: 
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 (2.10d) 

The set of Equations (2.10) are integrable (Muslih & Guler, 1998), the total variation of Equation (2.6) and 
Equation (2.7) can be written as: 

0i i idH d da      

 ( ) ( )i j i jb q dt da q    (2.11) 

0p
i i idH dp db    ( )j
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So, we have 
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which is equivalent to 
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Or                                   1 ( )
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q f
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Defining the symmetric matrix ijf as  

 
ijf =

( )( ) ji

j i

a qa q

q q

 
 

 (2.15) 

If the inverse of the matrix ijf  exist, then we can solve all the dynamics iq , while if the rank of the matrix ijf is 
n-R, then we can solve the dynamics aq  in terms of independent parameters ( , ,t q q  ), 1,2,..., R  . 

The total derivative of the Hamilton-Jacobi function can be obtained as: 
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i i
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 (2.16) 

Using the HJPDEs Equations (2.9), we get 
 

i idS a dq Vdt   (2.17) 

One can integrate the above Equation (2.17) to give  

 
ii

S a dq Vdt    (2.18) 

We can use the fact that 

( )i i i i i i ii
d a q a q a dq q da        , 

Equation (2.18) reduces to 
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By some rearragment, Equation (2.19) becomes  
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Assuming that the function ( )ia q  and ( )V q  satisfy the following conditions 
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Equation (2.21) becomes 
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The action S to be an integrable function, the terms in the brackets must be zero, i.e. 
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Equation (2.23) gives the equation of motion for the coordinates jq . 

3. Examples 

3.1 The First Example 

Consider the following singular Lagrangian: 

 )(
2

1 2
2

2
22211 qqqqqqL    (3.1) 

The potential of this Lagrangian is given by 

2 2
1 2

1
( )

2
V q q   

and the coefficients 1a  and 2a  are 

11 qa  , 
2 2a q  

The generalized momenta by using Equation (2.4) and Equation (2.5) are: 
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From Equation (2.6) and Equation (2.7) the primary constraints are given as  

 111 qH   ; (3.3a) 

 
2 2 2H q    ; (3.3b) 

 111 qpH p  ; (3.3c) 

 222 qpH p  . (3.3d) 

The canonical Hamiltonian 
0H  is given by 
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Making use of (2.23), we can obtain the equation of motion for 1q  and 2q  

 0111  qddtqqd  , (3.5a) 

 0222  qddtqqd  . (3.5b) 

These equations are given by 
 02 11  qq ; (3.6a) 

 02 22  qq . (3.6b) 

Equations (3.6) have the following solutions 
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3.2 The Second Example 

Let consider the singular Lagrangian: 
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The potential of this Lagrangian is given by 

 2 2 3
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and the coefficients 1a , 2a  and 3a  are 

1 2a q , 
2 1a q  , 

33 qa   

The generalized momenta by using Equation (2.4) and Equation (2.5) are: 

 
1

1 1

L d L
p

q dt q

        
= 2 1

pq H   ; (3.10a) 

 
2

2 2

L d L
p

q dt q

        
= 1 2

pq H  ; (3.10b) 

 
3

3 3

L d L
p

q dt q

        
=

pHq 33  ; (3.10c) 

 
1 2 1

1

L
q H

q
    


; (3.10d) 

 
2 1 2

2

L
q H

q
     


; (3.10e) 

  33
3

3 Hq
q

L 




. (3.10f) 

By Equation (2.6) and Equation (2.7) the primary constraints are given as  

 
1 1 2H q    ; (3.11a) 

 
2 2 1H q    ; (3.11b) 

 
333 qH   ; (3.11c) 

 
211 qpH p  ; (3.11d) 
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The canonical Hamiltonian 
0H  is given by 
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Making use of (2.23), we can obtain the equation of motion for 3q  

 0333  qddtqqd  . (3.13) 

This equation can be written as 

 02 33  qq , (3.14) 

Which have the following solution 

 
2

sin
2

cos3

t
B

t
Aq  . (3.15) 



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014 

36 
 

4. Conclusion 

This paper investigated the Hamilton-Jacobi formalism for singular Lagrangian with linear acceleration. 
Lagrangians linear in accelerations with coefficients given by functions of coordinates alone yield primary 
constraints. It is proven that the total derivative of the Hamilton-Jacobi function has been constructed using the 
HJPDEs and Hamilton-Jacobi function is integrable. It is shown that both the equations of motion and the 
integrable action are obtained from the integrability conditions and the number of independent parameters are 
determined from the rank of matrix 

ijf . 
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