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Abstract 
This paper presents an algorithm for extracting underlying frequency components of massive 
Electroencephalogram (EEG) data. Frequency components of these data play a vital role to realize brain-body 
condition. Usually, a huge amount of time and specially built computers are essential to process these EEG data 
having different subjects. It also restricts to visualize inherent frequency of EEG for a general practitioner. An 
algorithm is developed using two-stage cascaded architecture of canonical correlation analysis with neural 
network named multiway neural canonical correlation analysis (MNCCA) to address three major challenges for 
extracting frequency components from EEG data, such as: (a) It processes multiway data which are feed 
sequentially into neural network, rather than feeding whole data at a time, (b) It uses the conventional personal 
computer instead of special computer built for such application, (c) It spends very short time for a moderate data 
set consisting of several ways (time, trials and channels). The experimental results are obtained with three 
different kinds of networks having linear, nonlinear and nonlinear feedback structures. The inherent dominant 
frequency of 1 Hz having a quite resemblance with EEG landscape has been found. This provides a great 
opportunity in analyzing brain-body function. 

Keywords: Electroencephalogram (EEG), canonical correlation analysis (CCA), steady-state visual evoked 
potential (SSVEP), neural network (NN), multiway data 

1. Introduction 

The human brain generates electrical signals called electroencephalogram (EEG) which are related to body 
functions. These signals are roughly less than 100 µV and can be measured with electrodes placed on the scalp, 
noninvasively. The EEG is typically described in terms of rhythmic activity. The rhythmic activity is divided 
into frequency bands. These rhythmic activities within a certain frequency range were noted to have a certain 
distribution over the scalp or a certain biological significance. Frequency bands are usually extracted using 
spectral methods (for instance Welch) as implemented for instance in freely available EEG software (EEGLAB, 
2013). A series of operation is repetitively required to get final frequency components if a conventional software 
or frequency analyzer algorithm is used. Moreover, there has been computational intractability if the data are 
massive and multiway.  

The processing of massive EEG data is a great challenge for computational scientists. The multiway EEG data is 
configured using different ways such as time, channels and trials - usually termed as tensor and the order of the 
tensor is the number of dimensions, also known as ways or models (Cichocki et al., 2009). Steady-state visual 
evoked potential (SSVEP) is one kind of potential of brain signal. It is evoked over occipital scalp areas with the 
same frequency as the visual stimulus and may also include its harmonics when subject focuses on the repetitive 
flicker of a visual stimulus (Scherer, Brauneis, & Pfurtscheller, 2005; Zhu et al., 2010). Recent approaches try to 
find inherent underlying frequency components in EEG signals. In addition, EEG signal may be contaminated by 
noise and it is still a challenge to detect the rhythmic activities of such signals especially at low stimulus 
frequency (Zhang et al., 2011). Hence, this requires high capacity machine which are specially built for a 
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particular EEG application and are not available for general users or practitioners. Therefore, a comfortable and 
user friendly faster method is essential to process multiway data with limited computational resources such as an 
ordinary personal computer. 

There have been a number of approaches to recognize frequency of EEG signals. A traditional and widely used 
method for EEG signal recognition is power spectral density analysis (PSDA). PSD is estimated from the EEG 
signals within a time window typically by Fast Fourier Transform (FFT), and its peak is detected to recognize 
the target stimulus. It takes longer time window to estimate spectrum with sufficient resolution (Cheng et al., 
2002). Some studies also took the PSDs as features and applied linear discriminate analysis (LDA) or support 
vector machine (SVM) classifier to classify the desired frequency (MÄuller-Putzet et al., 2005; Zhu et al., 2010) 
which may limit the real-time implementation. 

Lin has found out the correlations between a set of EEG signals of multiple channels and a set of reference 
sine-cosine signals with different stimulus frequencies using statistical Canonical Correlation Analysis (CCA) 
(Lin et al., 2006). The desired stimulus is then recognized from conversed correlations by maximization process. 
It provides better recognition performance than that of the PSDA since it delivers an optimization for the 
combination of multiple channels and improves the noise tolerance. A comparative analysis between the CCA 
and PSDA was also discussed in (Hakvoort, Reuderink, & Obbink, 2011). They also adopted the sine-cosine 
waves as reference signals used in the CCA for SSVEP recognition. Tensor CCA is an extension of the statistical 
CCA, which addresses on inspecting the correlation between two multiway data groups, instead of two sets of 
variables (Kim et al., 2009). Multiway CCA (MCCA) (Zhang et al., 2011) has been proposed to address the real 
time implementation of brain computer interface system. They remove inter subject variability and trial to trial 
variability in finding the optimized reference signals, although it requires specially built computers which are not 
available for general purpose. The matlab program for MCCA requires very long time to execute. However, the 
detail insight realization of correlation profile is still missing. 

In this paper we implement CCA using neural network (NN), since NN is well known for their powerful capacity 
(Oja, 1982; Sanger, 1990; Lai & Fyfe, 1999). We demonstrate two-stage “Multiway Neural Canonical 
Correlation Analysis” (MNCCA), which maximizes correlation between a set of sine cosine signals and a set of 
EEG signals. As a result, an optimized reference signal is obtained in the first stage. In the second stage, a test 
set of EEG signals and optimized reference signal are applied to the same network to find another optimized 
signal. Finally, frequency components of EEG data set are determined from above two optimized signals where 
their correlation becomes maximum. This does not require high capacity machine and it performs better than 
others since special NN cascade architecture is incorporated. According to our best knowledge this is the first 
application of neural CCA for extracting frequency components from EEG data.  

This approach provides several advantages such as i) it does not require high capacity machine, ii) it uses NN 
that exhibits improve correlation in comparison to standard statistical methods (Lai & Fyfe, 1999), iii) EEG 
input data are presented sequentially in the MNCCA network instead of presenting entire data at once. As a 
result, MNCCA does not require huge computer memory at a time. It is usually seen that an ordinary machine 
cannot process such huge data with MATLAB environment. In addition, nonlinear networks are used to reflect 
on nonlinear correlation of EEG data. 

This paper is structured as follows. Section 2 describes characteristics of EEG data. In section 3, entire 
methodology is configured and described. In addition, three consecutive subsections - reference signals 
generation, outline of MNCCA and extraction of frequency components are discussed. Experimental results and 
discussion are presented in section 4. We conclude the paper in section 5. 

2. EEG Data Characteristics and Collection 

The EEG dataset have been collected from SSVEP database (SSVEP DATA, 2013). For the clarity, we describe 
first about the database. Brain signal acquisition in SSVEP was performed with 128 active electrodes (channels) 
at a sampling rate of 2,048 Hz (Biosemi Inc., Amsterdam) (Hovagim, Toshihisa, & Andrzej, 2010). Four healthy 
subjects with normal or corrected-to-normal vision participated in this study. The subjects were fully informed of 
all procedures and having no neurological disorders. Before each experiment they were briefly tested for 
photosensitive epilepsy. Subjects, who did not have any prior training except for a short practice run during the 
briefing, were seated 0.9 m from a 21" CRT computer display operated at a high vertical refresh rate.  

SSVEP stimulation was achieved using small reversing black and white checkerboards with 6×6 checks. The 
checkerboards had dimensions 1.8o ×1.8o arc, so that the diameter (2.5o arc) would just cover the size of the 
fovea. A single small checkerboard stimulus was displayed for three frequencies sequentially (8, 14 and 28 Hz), 
covering each of the three SSVEP response regions (low, medium, and high frequency) (Regan, 1977). The EEG 
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ଶ௝ݒ∆  ൌ ଶݕଶ௝ሺݓଶ௝ݔߟ െ ଵሻሺ1ݕଵߣ െ ଶ݂ଶሻ (14) 

ଶߣ∆  ൌ ଴ሺ1ߟ	 െ  ଶଶሻ (15)ݕ

The joint learning rules for nonlinear feedback network are  

ሻݐଵ௝ሺݓ∆  ൌ ߟ ૚݂ሺݕଶሺݐሻ െ ሻሻݐଵሺݕଵߣ ൅ ݐଵሺݕ0.5 െ 1ሻ (16) 

ሻݐଵ௝ሺݒ∆  ൌ ሻݐଶሺݕଵ௝ሺݓଵ௝ݔߟ െ ሻሻሺ1ݐଵሺݕଵߣ െ ଵ݂ଶሻ ൅ ݐଵሺݕ0.5 െ 1ሻ (17) 

ሻݐଶ௝ሺݓ∆  ൌ ߟ ଶ݂൫ݕଵሺݐሻ െ ሻ൯ݐଶሺݕଶߣ ൅ ݐଶሺݕ0.5 െ 1ሻ (18) 

ሻݐଶ௝ሺݒ∆  ൌ ሻݐଶሺݕଶ௝൫ݓଶ௝ݔߟ െ ሻ൯ሺ1ݐଵሺݕଵߣ െ ଶଶሻࢌ ൅ ݐଶሺݕ0.5 െ 1ሻ (19) 

The correlation is very important in order to assess the relationship between two time series. Experiments were 
done using time series of EEG signals of different subjects and sine-cosine reference signals with different 
harmonics. Borrowing the idea of multiway CCA, we introduce two-stage multiway neural CCA to find 
frequency components of EEG data set. We consider a three-way EEG data (channel × time × trial) and a 
sine-cosine reference signal matrix (harmonic × time) with stimulus frequency and its higher harmonics. Our aim 
is to find underling frequency components of multiway EEG data set, based on the optimized reference signals 
of sine-cosine and multiway data groups. A brief description of two-stage MNCCA algorithm is outlined in A1 
below. 

Al: Algorithm for computing correlations using two-stage MNCCA 

Input: EEG data x1, x2, x3, .xm 	∈  RIxJxK and reference sine-cosine signals Ym (m=1,2,…M) 	∈  R2HxJ 
corresponding to M stimulus frequencies. Here I, J, K and H indicate the total number of channels, sampling 
points, trials and harmonics respectively.   

Output: Correlation Sm 

 
Begin loop 
 for m=1 to M do 

   begin stage 1 
     Input:    Training subjects (EEG data set) and reference sine-cosine signals Ym 

     Output:  Optimized signals y1 and y2 

               Random initialization of w1 and w2 
      for i=1 to I do 

            repeat 
                  Update w1 and w2 

            until the maximum number of iteration is reached 

      end 
 Compute the optimized signals y1 and y2 

     end stage 1 
   begin stage 2 
     Input:    Testing subject (EEG data set) and optimized reference signal y2 

     Output:  Optimized signals y3 and y4 

             Random initialization for weight w3 and w4 

      for i=1 to I do 

            repeat 
                  Update w3 and w4  

            until the maximum number of iteration is reached 

      end 
 Compute the optimized signals y3 and y4 
    end stage 2 

 Compute correlation Sm from y2 and y4 

End loop 
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The correlation coefficient Sm which reflects the relationship between y2 and y4 is calculated by Equation (20), 
where ||.|| denotes norm.  

 S୫ ൌ 	ට1 െ ||୷మି୷ర||మ||୷మି୉ሾ୷మሿ||మ (20) 

Larger Sm implies more significant relationship between y2 and y4 (Zhang et al., 2011). 

From correlation Sm, we find desired frequency ௗ݂௘௦௜௥௘ௗ by using the Equation (21), where, fm is the stimulus 
frequency of sine-cosine reference signal.  

 ௗ݂௘௦௜௥௘ௗ ൌ ܵ௠௙೘௠௔௫  (21) 

We consider time window 	ሺܹܶሻ ൌ 	1 ௠݂⁄ .  at different fm we have a correlation profile. The maximum 
correlation converges at one or more fm value(s) which is (are) our desired frequency component(s). 

4. Results and Discussion 
The MNCCA algorithm is used to extract underlying frequency components of multiway EEG data. The idea is 
to find maximum correlation points between reference sine-cosine signals and EEG signals of different subjects. 
Initially random weights are generated for both stages of the networks. Weights are updated according to update 
rules and normalized after presenting each data into the network. Three harmonic settings are utilized for each 
types of network. The harmonic settings of reference sine-cosine signals are regarded as 1ܪ ∈Fundamental and 
multiple of fundamental, 2ܪ ∈2nd Harmonic and multiple of 2nd Harmonic, 3ܪ ∈3rd Harmonic and multiple of 
3rd Harmonic. Subjects 1 to 4 are denoted as S1, S2, S3 and S4 respectively. The programs are implemented in 
MATLAB environment using a computer with Intel (R) Core TM i5-2450MA 2.50 GHz, 4.00 GB of RAM and 
64-bit Operating system. 

Figures 4, 5 and 6 describe correlation profiles against time (1/fm) in seconds. At	1ܪ, maximum correlation 
occurs at 1 Hz stimulus frequency for different subjects as observed in Figure 4. It is seen that maximum 
correlation occurs at 5 Hz and 1 Hz with linear network for S1, S2, S3 and S4 as shown in Figure 4(a). Similar 
results are also observed with nonlinear feedback network as shown in Figure 4(c). However, maximum 
correlation becomes 1 Hz only with feedback free nonlinear network across all subjects as shown in Figure 4(b).  

At 2ܪ, when 2nd Harmonic and multiple of 2nd Harmonic are used as sine-cosine reference signals set, it is 
found that maximum correlation is found at 0.5, 1, 2.5 and 5 Hz with linear network, as shown in Figure 5(a). 
We also use nonlinear and nonlinear feedback networks, as observe in Figures 5(b) and 5(c) respectively. In the 
last two cases, maximum correlation is found at 1 Hz stimulus frequency only. 

At 3ܪ, when 3rd Harmonic and multiple of 3rd Harmonic are used as sine-cosine reference signals set, it is found 
that maximum correlation is found at 0.625, 0.71, 1, 1.672 and 5 Hz with linear network, these are shown in 
Figure 6(a). Nonlinear and nonlinear feedback networks are also studied. The results are plotted in Figures 6(b) 
and 6(c). Maximum correlation is found at 1 Hz stimulus frequency for both cases. In this sense, we claim that a 
frequency of 1 Hz is dominant for these experimental EEG data of different subjects. The appearance of 
maximum correlations at frequencies other than 1 Hz may be due to the harmonic and subjects variations. 

MNCCA networks involve a number of used specified parameters such as learning rate (η, η଴) and Lagrange 
multipliers (	λଵ, λଶ). The values of them are selected with few initial trial runs. It has been found empirically that 
best results are achieved when, 	η଴ ≫ η . We choose 	λଵ ൌ 0.0005, λଶ ൌ 0.000002, η଴ ൌ 0. 0005 and η ൌ0.00000015 for representative result. Correlation profile does not change significantly if these values of 
constants are increased or decreased. Iteration is one of important factors for the convergence of NN. If iteration 
is increased the correlation profile is improved, resulting no change in frequency characteristic.  

One can determine brain condition of a particular subject using this approach which is easy to program in an 
ordinary machine. Usually massive parallel EEG data requires a number of days to observe the final result. Our 
approach is simple to execute within a minute and does not require special machine.  
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Figure 4. Correlation coefficient of MNCCA with (a) linear network, (b) nonlinear network, and (c) nonlinear 
network with feedback for H1 settings 
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Figure 5. Correlation coefficient of MNCCA with (a) linear network, (b) nonlinear network, and (c) nonlinear 
network with feedback for H2 settings 
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Figure 6. Correlation coefficient of MNCCA with (a) linear network, (b) nonlinear network, and (c) nonlinear 
network with feedback for H3 settings 
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5. Conclusion 

In this study, two-stage MNCCA approach is proposed to recognize the stimulus frequency. MNCCA is 
implemented between the EEG data and reference sine-cosine signals to get optimized reference signals in the 
first stage. MNCCA is again applied in the second stage to inspect the correlation between the test EEG data and 
optimized reference signals of the first stage. Finally frequency components are extracted from two optimized 
signals. Both optimized signals include the information of subject-specific and trial-to-trial variability meaning 
that the MNCCA converges to underlying frequency components. Among different frequencies for different 
subjects, a frequency of 1 Hz is dominant across the subjects. The propriety of dominant frequency has been 
confirmed by observing correlation profile. The proposed method takes about a minute with user friendly 
ordinary computer, whereas the statistical CCA takes several hours to execute. It is indicative that nonlinear 
network shows an improved correlation profile leaving the overall performance similar. The algorithm is simple 
to program, implement and useful for finding underlying frequency of SSVEP.  
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