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Abstract 
This paper presents a novel set-up designed to investigate plastic deformation of a metal at high strain rates. The 
set-up is similar to conventional split Hopkinson pressure bar but the striker bar is eliminated and instead of it a 
spherical projectile, accelerated to high velocity with a two-stage light-gas gun, impacts and penetrates in a steel 
plate attached to the input bar. This results in propagation of plane waves in the bars and the sample. Impacts 
were carried out by aluminum spherical projectiles with diameter of 3.5 mm and velocity between 2 and 2.5 
km/s onto front plates with thickness 10 mm and diameter of 55mm; the thickness of samples was between 3 and 
7 mm. The experimental results were compared with 3D finite element simulation. Also, the effect of projectile 
velocity and sample thickness were investigated through experimental tests.  

Keywords: plastic deformation, high velocity impact, finite element method, wave propagation, split Hopkinson 
pressure bar 

1. Introduction 

Constitutive equations associate flow stress to effective parameters such as strain, strain rate and temperature 
(Meyers, 1994). Flow stress in metals logarithmically increases in the ranges of less than 103 s-1 or 104 s-1 

(dependent on the material) however for the strain rate larger than 103 s-1 or 104 s-1, flow stress goes up much 
more dramatically. Follansbee and Kocks (1998) and Follansbee and Gray (1991) demonstrated that the flow 
stress in OFHC copper starts to rise from the strain rate of 103 s-1.  

Many experimental works were conducted to obtain constitutive relations of different materials at high strain 
rates. Field, Walley, Proud, Goldrein and Siviour (2004) reviewed different experimental methods to investigate 
high strain rate loadings. Experiments at high strain rates for different materials were performed using the split 
Hopkinson bar (Sasso, Newaz, & Amodio, 2008), Taylor impact (Liu, Tan, Zhang, Hu, Ma, Wang, & Cai, 2009), 
plate impact experiment (Frutschy & Clifton, 1998), and high intensity laser (Ren, Zhan, Yang, Dai, Cui, Sun, & 
Ruan, 2013). 

In particular, split Hopkinson bar is used to evaluate dynamic properties of metals in compression (Zou, Luan, 
Liu, Chai, & Chen, 2012; Yang, Tang, Y. Liu, Z. Liu, Jiang, & Fang, 2013), tension (Gerlach, Kettenbeil, & 
Petrinic, 2012), and torsion (Gilat & Cheng, 2002), with strain rates between 102 and 104 s-1 (Gray, 2000), and for 
different FCC metals such as OFHC copper (Follansbee & Kocks, 1988; Wang & Meyer, 2010; Kapoor & 
Nemat-Nasser, 1998), Aluminum (Yang et al., 2013; Kapoor & Nemat-Nasser, 1998), and any other kind of 
metals such as steel (Sedighi, Khandaei, & Shokrollahi, 2010; Kajberg & Sundin, 2013). Many works have been 
done on this subject from an experimental as well as numerical point of view.  

In the usual split Hopkinson pressure bar (SHPB) system, a sample is placed between two elastic pressure bars 
(input and output bar), made of high strength material, so that they remain elastic even though the sample itself 
may be taken to plastic strains. SHPB test is based on two assumptions: on one hand, force is in equilibrium on 
both sides of the sample. The required time and number of wave transits in the sample to satisfy this assumption 
depends on the sample length, relative impedance and sample to bars area (Ravichandran & Subhash, 1994; 
Yang & Shim, 2005). On the other hand, the sample deforms at constant volume.  
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Table 1. Materials and size of spherical projectile, front plate, pressure bars and specimen 

 Material Young modulus, 
E(GPa) 

Density, ρ 
(kg/m3) 

Poisson 
ratio, ν 

Length (thickness) 
(mm) 

Diameter 
(mm) 

Specimen 

 
OFHC 
copper 

129.8 8960 0.34 3-10 5 

Input and 
Output bars 

Steel 4340 200 7830 0.29 120 6 

Front Plate Steel 4340 200 7830 0.29 10 55 

Spherical 
Projectile 

Al 1100 69 2710 0.27 - 3.5 

 

Impact experiments were carried out at the CISAS Hypervelocity Impact Facility that is based upon a two-stage 
light as gun (Angrilli, Pavarin, De Cecco, & Francesconi, 2003; Pavarin & Francesconi, 2004; Francesconi, 
Pavarin, Bettella, & Angrilli, 2008) with the ability to accelerate projectiles up to 100 mg at a maximum speed of 
6 km /s. The impact facility has been used in the past to investigate the impact behavior of various materials for 
different structures at different impact conditions (Colombo, Arcaro, Francesconi, Pavarin, Rondini, & Debei, 
2003; Nagao, Kibe, Daigo, Francesconi, & Pavarin, 2005; Francesconi, Pavarin, Giacomuzzo, & Angrilli, 2006; 
Francesconi et al., 2008; Pavarin et al., 2008; Higeshide, Nagao, KIbe, Francesconi, & Pavarin, 2009; 
Francesconi, Giacomuzzo, Kibe, Nagao, & Higashide, 2012; Francesconi, 2013; Francesconi, Giacomuzzo, 
Barilaro, Segato, & Sansone, 2013; Francesconi, Giacomuzzo, Branz, & Lorenzini, 2013). For this study, 3.5 
mm spherical projectiles were launched at velocities in the ranges of 2 to 2.5 km/s. The impact angle was 0° for 
all the tests. In each experiment, an aluminum projectile was launched onto the front plate creating a crater on it 
and producing pressure waves that were transmitted to the input bar. In order to obtain plane waves in the bar, 
the front plate thickness, the input bar diameter and the impact velocity were selected according to the results of 
the numerical simulations presented later in section 3.2.  

Strain gauges SR4 VISHAY MICRO-MEASUREMENT with a gage length of 3mm and gage factor of 2.08 
were used on pressure bars. The signals from the strain gauges on the input and output bars were amplified with 
two 2310 Vishay amplifiers with 100 kHz bandwidth. The output signals were acquired by an oscilloscope with 
sampling rate equal to 250 MS/s. For each test, stress ( , strain rate (  and strain (  in the sample were 
calculated using the following equations (Field et al., 2004): 

(1)2
(2)

(3)

Where E is the Young’s modulus of the bar material,  is the elastic wave speed in the bar material which is 
5850 m/s for steel 4340 and  is the sample thickness. Table 2 summarizes the test parameters for different 
projectile velocities (V), front plate thickness (hf), sample thicknesses (hs), penetration depth (dh). 

 
Table 2. Test parameters. Uncertainly are ± 50 m/s for V, ± 0.05 mm for hf, hs and dh 

Shot No. V (km/s) hf (mm) hs (mm) dh (mm) 

1 2.00 10.00 3.00 1.10 

2 2.20 10.00 3.00 1.15 

3 2.00 10.00 5.00 1.10 

4 2.00 10.00 7.00 1.15 

5 2.40 10.00 3.00 1.20 

6 2.50 10.00 3.00 1.25 
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3. Finite Element Simulations 
3.1 Modeling of Problem 

The experimental tests described in section 2 were reproduced with Abaqus 3D. Abaqus is standard and 
successful software to simulate plastic deformation of FCC metals in high strain rate loadings (Liu & Sun, 2014; 
Li & Ramesh, 2007; Verleysen & Degrieck, 2006). 

An elastic model was used for modeling input and output bars made of steel 4340. Johnson-Cook plasticity 
model (Johnson & Cook, 1983) was used for modeling plastic deformation of projectile, front plate and sample. 
Foresaid constitutive model has much success because of its simplicity and the availability of parameters for 
various materials of interest (Khan & Liang, 1999; Armstrong & Walley, 2008). The Johnson-Cook plasticity 
model is: 

σ 1 1  
(4)

where A is the static strength, B the strain-hardening modulus,  the normal strain, C the rate sensitivity 
coefficient, m the thermal-softening exponent, n the strain-hardening exponent, 	  the strain rate,  the 
reference strain rate,  the normal strain, T the current temperature, T0 the room temperature, and Tm the melting 
temperature. Table 3 reports the mechanical properties of steel 4340, Al 1100 and OFHC copper as well as the 
coefficients of Johnson-Cook plasticity model for OFHC copper (Johnson & Cook, 1983; Khan & Liang, 1999; 
Armstrong & Walley, 2008; Fathipour, Zoghipour, Tarighi, & Yousefi, 2012). 

 

Table 3. Coefficients in the Johnson-Cook plasticity model (Johnson & Cook, 1983; Khan & Liang, 1999; 
Armstrong & Walley, 2008), Johnson-Cook damage model (Fathipour, Zoghipour, Tarighi, & Yousefi, 2012; 
Johnson & Cook, 1985) and Mie-Gruneisen EOS for different metals (Corbett, 2006; Steinberg, 1996) 

 A (MPa) 
B 

(MPa) 
n C m 

ε0 

(s-1)
Tm(K) D1 D2 D3 D4 D5 

c0 

(m/s) 
Sα Г0

OFHC copper 90 292 0.31 0.025 1.09 1 1356 - - - - - - - - 

Al 1100 148 361 0.184 0.001 0.859 1 1220 0.071 1.248 -1.14 0.147 0.1 3935 1.578 1.69

Steel 4340 792 510 0.26 0.014 1.03 1 1793 0.05 3.44 -2.12 0.002 0.61 5386 1.337 1.97

 

In addition to the plasticity model, the Johnson-Cook damage model was used to simulate failure in both of front 
plate and projectile. This model is appropriate to predict initiation of damage in ductile materials experiencing 
large pressures, strain rates and temperatures (Johnson & Cook, 1985). The model is: ∆

 
(5a)

ε D D 	exp D σ∗ 1 D ln 1 ∗  
(5b)

Coefficients of D1 to D5 are reported in Table 3 (Fathipour, Zoghipour, Tarighi, & Yousefi, 2012; Johnson & 
Cook, 1985). D is the damage parameter and failure occurs when D=1. * is stress triaxiality and is defined as 
ratio of effective to hydrostatic stress. D1 to D5 are material-dependent parameters. Johnson-Cook damage model 
was used for simulation of projectile penetration to the front target. An element removes from the mesh when 
damage parameter (D) reaches the ultimate value. 

The Mie- Grüneisen EOS was used to describe the volumetric behavior of Al 1100 and steel 4340: 

Γ e  (6)

Where  is hydrostatic pressure, ρ  is the initial density,	Γ 	is the Gruneisen’s gamma at reference state,  
and e 	are: 11 1 S  

(7)
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