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Abstract 
Hazardous situations related to rainfall events can be due to very intense rainfall, or to the persistence of rainfall 
over a long period of time. Such events may result to an exceedence of the capacity of drainage systems resulting 
in the heap of basements which may lead to landslides and flooding. This study assesses the persistence 
dependence of rainfall time series of Chui Chak, a station in Peninsular Malaysia that observed the highest 
rainfall event for the period 01/01/1975-31/12/2008. The persistence dependence of the rainfall time series was 
modelled via fractional ARIMA model augmented with the GARCH model. The Ljung-Box test for testing 
autocorrelation proves that the combined ARFIMA-GARCH model captures the temporal persistence behaviour 
in the Chui Chak rainfall time series data with persistence measure 0.839. This measure represents a relatively 
lasting persistence, that is, the process variability should return to the historical average after a relatively long 
period of time which may have a risk of extreme event. 
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1. Introduction 
Conventionally, rainfall has been considered as a random process with several peculiarities, mostly associated to 
intermittency and non-Gaussian behaviour (Papalexiou et al., 2011). Hazardous situations related to rainfall 
events can be due to very intense rainfall, or to the persistence of rainfall over a long period of time. Such events 
may give rise to an exceedence of the capacity of sewer systems resulting in the inundation of roads and 
basements which may lead to landslides or flooding. To prevent such hazards, an analysis of hydrological and 
climatological records may aid in modelling by giving enhanced understanding of the processes that might 
derived the extremes. 

Persistence dependence is generally recognized in hydrological, climatological and financial time series over a 
varied range of time scales. Rainfall analysis have a substantial role in the successful planning, development and 
implementation of water resource management to evaluate engineering works and environmental problems such 
as hydropower generation, reservoir operation, flood control and water quality control. Henceforth, an efficient 
study of rainfall temporal behaviour is the critical mission in hydrology (Modarres & Ouarda, 2013). Most of the 
traditional methods for measuring the risk related with behaviour of the data set are done through study of the 
variance or volatility. Nevertheless, the study of the variance or volatility does not give explanation that there 
might be a predictable component in the data. 

Stochastic models are designed to replicate the imperative behaviour or patterns evident in the data set grounded 
on the current knowledge of the process. The application of stochastic models to hydrology and water resources 
management is mainly for two important explanations. Firstly, stochastic models provide a basis for decisions 
making. Secondly, stochastic models also increase the understanding of physical phenomena. This is the crucial 
goal of the physical sciences. A worthy modelling framework will extract previously unknown insight from the 
data so as to plan for the future. 

The dependence structure of rainfall data is typically very complex both in space and time both in time. Daily 
rainfall data sets from dense networks of rain-gauge stations in peninsular Malaysia are commonly analysed in 
this paper using ordinary Kriging technique to identify the location that realized highest rainfall for the period 
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under study. Very high rainfall events have a substantial effect on society and may lead to loss of life and 
property. To conduct an in-depth study on the temporal dependence the daily rainfall series of the identified 
location with highest rainfall event would be very vital.  

Simple linear or nonlinear stochastic models may not always be appropriate in modelling the temporal 
dependence in rainfall time series. Certainly, rainfall time series data usually have both linear and nonlinear 
patterns. To adequately fit these chaotic time series, other more complicated models that have the ability to 
capture the dynamics of the series more precisely have to be taken into account (Yusof & Kane, 2013). There are 
a number of studies on time series modelling and forecasting that argue that performance improves in hybrid 
models (Zhang, 2003). Numerous authors published a lot of papers combining different models e.g., ARIMA 
with GARCH, ARFIMA with GARCH, HMM with GARCH, ANN with SVM etc. (Chau & Wu, 2010) 
investigates the joint effect of the hybrid of ANN-SVR model and the singular spectrum analysis on improving 
the accuracy of daily rainfall forecasting. Their results indicated that the hybrid of support vector regression 
model performed the best. Sallehuddin et al. (2007) proposed a model that integrates nonlinear Grey Relational 
Artificial Neural Network (GRANN) and linear ARIMA model. The forecasting ability of the model was 
compared with several other models, which include: ARIMA, Multiple Regression, GRANN, etc. The result 
have shown that the proposed hybrid of GRANN_ARIMA model has outperformed other models with 99.5% 
forecasting accuracy for small-scale data and 99.84% on large-scale data. Yin (2008) proposed a variant of an 
ARFIMA process by adding an explanatory variable into the ARFIMA long memory model. Comparing the 
forecast ability of the proposed model with other models such as; ARFIMA, the Random Walk and the ARMA 
process of the order one, the result show that the proposed model outperform other models in terms of out 
sample forecasting.  

Suhartono and Muhammad (2011) proposed a hybrid model to study trends and seasonal fuzzy time series. The 
proposed hybrid model is based on a Winter’s model and weighted fuzzy time series. The result revealed that 
more accurate forecast is obtained from the proposed hybrid method. It can be observed that most hybrid models 
performed better than the individual models in terms of forecast ability and accuracy. 

Rainfall time series is often characterized by long memory behavior (Yusof et al., 2013) and are highly skewed 
with volatility clustering (Villarini et al., 2010). Long memory is an asymptotic property of a stochastic process, 
characterizing the decay of the correlation between observations separated by increasingly large time lags. The 
fractionally integrated process is used in explicitly modeling of the long term memory structure. The possible 
way of representing the correlation structures is by the use of fractional differencing order d. It has been 
demonstrated that a stationary process will possess long memory behavior if 0 < d <0.5. For -0.5 < d < 0, the 
process is considered by a slow decay of autocorrelation but does not retain the long memory property. 
Therefore, in this case, the process is said to be anti-persistent. This behavior is often related to an over 
differentiation problem by the first difference filter. For 0.5 < d < l, the case is called non-stationary 
mean-reverting (Claude & Vivien, 2002). The testing of hydrological data with Long Memory models was done 
by number of authors (Koutsoyiannis, 2006; Koscielny-Bunde et al., 2006; Mudelsee, 2007; Wang et al., 2007; 
Gil-Alana, 2012; Yusof et al., 2013) and found it to be a common characteristic in hydrological data. 

The volatility clustering indicates that the residual of the series exhibits time-varying hetereoskedastic effect, that 
is, unconditional standard deviations are not constant through time. These characteristics can well be captured 
using the GARCH family models. The motivation for using both models comes from the notion that rainfall time 
series is characterised by both linear and non-linear pattern, therefore neither one of the models can identify the 
true data generating process DGP (Terui & Dijk, 2002). Modarres and Ouarda (2013) investigated the 
advantages of non-linear GARCH model over linear ARIMA model using stream flow data of the Matapedia 
River, Quebec, Canada. The result shows that the linear ARIMA model became inadequate for modelling stream 
flow time series due to the existence of Heteroskedasticity in the residuals of the ARIMA model as shown by 
Engle test. Therefore, combining an ARIMA (13, 1, 4) and GARCH (3, 1) models fitted the data very well. 
Therefore, recommended that “the application of a GARCH model is strongly suggested for hydrological time 
series modelling as the conditional variance of the residuals of the linear models can be removed and the 
efficiency of the model will be improved”.  

Wang et al. (2005) verified the presence of conditional heteroskedasticity in the residuals from linear models 
fitted to the daily and monthly stream flow processes of the upper Yellow River using the McLeod-Li and 
Engle’s Lagrange Multiplier tests. In a related study, HongRui et al. (2012) established a GARCH model to the 
daily runoff data for the period 1949–2001 of Yichang hydrological station. Szolgayova (2011) investigates 
whether hetereoskedastic effect can be detected in selected time series of daily discharges in Slovakia. The 
results show that heteroskedasticity was present in all of the tested time series. Other application of 
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hetereoskedastic models to hydrological data can be seen in (Chen et al., 2008; Laux et al., 2011; Yusof & Kane, 
2013). 

In this study, we first analyse the spatial variability of network of rainfall stations to identify the location with 
the highest rainfall event in peninsular Malaysia. The temporal pattern of the rainfall data of the identified 
location is then modelled via long memory model augmented with the Generalised Autoregressive Conditional 
Hetereoskedastic (GARCH) model taking in mind the observed features of the hydrological time series. The 
combined model would be good in capturing the persistence dependence in the rainfall data. The remaining of 
the paper is organized as follows: The methodology employed in the spatial analysis and the temporal modelling 
that captures both the linear and nonlinear behaviour of the daily rainfall series is presented in section 2. Section 
3 presents and discusses the results of the findings. Section 4 gives the conclusions and recommendations. 

2. Methods 
2.1 Rainfall Spatial Variability 

Kriging uses semivariance to measure the spatially correlated component, a component that is also called spatial 
dependence or spatial autocorrelation which expresses the spatial dependence between neighboring observations. 
The semivariogram quantifies the relationship between the semivariance and the distance between sampling 
pairs. A semivariogram plots the average semivariance against the average distance, this function may be used 
alone as a measure of spatial autocorrelation (Kang, 2012). 

The semivariance is computed by: 
( )
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where ( )h  is the average semivariance between known points si separated by distance h, the number of pairs 
of sample points arranged by direction in the bin is denoted by n and z is the attribute value. Semivariogram is 
modeled by fitting a theoretical function such as: Spherical, Exponential, Linear and Gaussian, to ensure that the 
solution is unbiased and has minimum variance (Kang, 2012). After having a suitable semivariogram model, the 
kriging technique can then be applied in estimating the value of z(s0) in each grid point s0 where no value is 
available. The Kriging estimate is of the linear form: 
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Where ( )iz s  is the measured value in the ith location, 
i  is an unknown weight for the measured value at the ith 

location, 
0s  is the prediction location and N  is the number of measured values (Journel & Huijbregts, 1978). 

The issue is to find a set of weighted coefficients in such a way that the kriging estimator satisfied the conditions 
of unbiasedness and the minimum estimation variance respectively, that is: 
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These two constraints make the kriging technique a good interpolator against other interpolation methods. 

2.2 Testing and Estimation of Fractional Degree of Integration (d) 

In testing and estimation of the fractional order of integration, Geweke and Porter-Hudak (1983) proposed the 
log-periodogram regression estimate and has been the most widely used (Shimotsu, 2002). Consider a fractional 
integrated process {Yt}, its spectral density is given by: 

 2( ) [2sin( / 2)] ( )d
uf f    (2) 

where   is the Fourier frequency, ( )uf   is the spectral density corresponding to 
tu  and 

tu  is a stationary 
short memory noise with 0 mean. Consider the set of harmonic frequencies 2 /j j n  , j = 0, 1, … n/2, where 
n is the sample size. Taking the logarithm of Equation (2) we have: 

 2ln ( ) ln ( ) ln[4sin ( / 2)]j u j jf f d    , j = 0, 1, …, n/2 (3) 

Equation (3) can be re-written in an alternative form following (Wang et al., 2007) as:  
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The fractional order of differencing d can be estimated using the regression equation in Equation (4). Using the 
periodogram estimate of ( )jf  , if the number of frequencies m used in Equation (4) is a function g(n) (a 
positive integer) of the sample size n, where m = ( )g n n  with 0 <   < 1, it can be demonstrated that the 
least squares estimate d


 using the above regression is asymptotically normally distributed in large samples 
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where 2ln[4sin ( / 2)]j jU   and U  is the sample mean of 
jU , j = 1 … g(n). 

Under the null hypothesis of no long memory (d = 0), the t-statistic 
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has limiting standard normal distribution. 

The value of the power factor   is the main determinant of the ordinates included in the regression, for more 
details see (Yusof et al., 2013).  

2.3 ARFIMA (p, d, q) Model  

Fractionally integrated processes are an extension of the class of Box and Jenkins methodology known as ARIMA 
processes. Autoregressive fractionally integrated moving average models (ARFIMA) grant more freedom and 
flexibility in modelling processes with long memory behaviour. Modelling data with fractionally integrated 
processes allows capturing and modelling slower rates of decay of autocorrelation than with other common time 
series methods such as AR, MA or ARIMA models (Baillie, 1996). The general ARFIMA (p, d, q) model was first 
introduced by Granger and Joyeux (1980) and Hosking (1981) and is formulated as: 

 ( )(1 ) ( ) ( )d
tB B X t B      (5) 

where 
t  is a white noise process with mean zero and variance 2 , B is the lag operator, ( )B  and ( )B  are 

polynomials of orders p and q denoted 1(1 ... )p
pB B     and 1(1 ... )q

qB B     respectively, with roots 
outside of the unit circle. The standard differencing operator (1 − B) of an ARIMA processes is replaced with a 
fractional operator (1 )dB where d is the fractional differencing parameter. The aim is to find the order of the AR 
and MA processes. The order of differencing can be decided using Equation (4). There exist several techniques for 
selecting the order ARMA model. One of them is based on the information criteria. The idea is to minimize the 
risk of under fitting that is, selecting an order smaller than the true order, and over fitting that is, selecting an 
order larger than the true order. One of the mathematical formulation of the parsimony criterion of model 
building is proposed by Akaike (1974) named Akaike Information Criterion (AIC). This method was formulated 
for the purpose of selecting an optimal model fits to a given time series data. Mathematically the AIC is 
formulated as: 

AIC (M) = 2 2( )
ln

p q

n
 

 

where p and q are the order of autoregressive and moving average parameters to estimate. The model with 
minimum AIC can be selected as the parsimonious model (Yurekli & Kurunc, 2007). 

2.3.1 Method of Estimating ARFIMA (p, d, q) Model 

For a tentative formulation of a model, identification of the model parameters, then it is needed to obtain the 
co-efficient estimates of the parameters. After the parameters have been estimated, the fitted model is then 
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subjected to diagnostic checks. Since the order of differencing has been estimated already, now we consider an 
ARMA model of the form: 

 
1 1 1 1... ...t p t p t t q t qY c Y Y                  (6) 

To estimate the value of 2
1 1( , , , , , , , )p qc       on the basis of observations on Y, The principle will be based 

on maximum likelihood estimation. This method makes it possible to estimate the parameters of the process. Let 
2 /

1 1( , , , , , , , )p qc         denote the vector of population parameters. Suppose we have observed a sample 
of size T 1 2( , ,..., )Ty y y , the approach is to calculate the joint probability density: 

 
1 1, ,..., 1 1( , ,..., ; )

T TY Y Y T Tf y y y 
   (7) 

which implies the probability of having observed this particular sample. The maximum likelihood estimate 
(MLE) of µ is the value for which this sample is most likely to have been observed; that is, it is the value of µ 
that maximizes (7). 

2.3.2 Test for Heteroskedasticity 

The identification of conditional heteroskedasticity is often based on testing whether squared residuals from the 
ARFIMA model are autocorrelated (Bollerslev & Mikkelsen, 1996; Andersen & Bollerslev, 1998) among many 
others. Testing for the lack of correlation of particular residuals, can be carried out using different methods, 
among the methods the Mcleod-Li Test would be implemented in this paper. 

This test for heteroskedasticity was proposed by McLeod and Li (1983). It looks at the autocorrelation function 
of the squares of the residuals from the fitted model and tests whether the correlation between ( 2

tx , 2
t jx  ) is not 0 

for some j. The autocorrelation at the j lag for the squared residuals { 2
tx } is estimated using: 
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For the null hypothesis that 
tx  is an independently identically distributed (i.i.d) process, McLeod and Li (1983) 

demonstrated that, for fixed L,     1 , ,N L     is asymptotically a multivariate unit normal. 
Consequently, if L is sufficiently large, the usual Ljung-Box (LB) statistic: 
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is asymptotically 2 ( )L . If the probability of Q  is higher than   = 0.05, then is a strong evidence that the 
residuals are uncorrelated and the model is suitable for the data set. If the probability is less than   = 0.05, then 
the residuals are correlated and the model is inadequate, therefore need to repeat the model building process to 
achieve an adequate model (Modarres & Ouarda, 2012). 

2.4 GARCH Modeling 

The ARFIMA model is adequate for modelling linear dependence of rainfall data; however, the model cannot 
capture the hetereoskedasticy in the time series typically observed in the form of existence of serial dependence 
in squares of the model residuals. Therefore, the residual t  from the fitted model is modelled using GARCH 
family models to reduce or remove the heteroskedasticity. 

Introduced by Engle (1982), the Autoregressive Conditional Hetereoskedastic (ARCH) model, and generalized 
by Bollerslev (1986), named Generalized Autoregressive Conditional Hetereoskedastic model (GARCH). The 
term “conditional” implies the level of association on the past sequence of observations and the “autoregressive” 
describes the feedback mechanism that incorporates past observations into the present (Laux et al., 2011). 
The variance equation of the GARCH (p, q) model can be expressed as: 

 
t t tz  , 

tz ~   (0, 1) (9) 

 2 2 2

1 1

p q

t i t i j t j
i j

      
 

    2 2( ) ( )t t          (10) 

where 
t  is the residuals from the fitted ARFIMA model and  (0, 1) denote the pdf (probability density 

function) of the residuals with 0 mean and variance 1.   is the distributional parameter that define the the shape 
of the distribution. The GARCH (p, q) process is called a stationary process if the following conditions hold: 
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cov( , ) 0t s   , t s , if and only if (1) (1) 1    
The stationarity assumption in statistical analysis of a time series data is necessary. In GARCH modelling this 
considers the constraints on the estimated parameters in the maximum likelihood-estimation. It follows the 
theorem that states the restrictions on the estimated parameters in the GARCH (p, q) model for stationarity in the 
GARCH process. The required and sufficient condition for the existence of a second order stationary solution is 
that: 1    holds. The simplest GARCH model is GARCH (1, 1) model (Hu et al., 2010). 

2.5 Choice and Validation of Time Series Model 

When a good model for the data generating process of a time series has been built, it is common practice to test 
for the model acceptability. Test for residuals autocorrelation is the prominent tool for this task. To judge 
whether ARCH effects and autocorrelation have been completely removed or not, a well-known example is a 
Portmanteau test for residual autocorrelation and ARCH-LM test. The former is implemented in this paper. 
2.5.1 Portmanteau Test for Residual Autocorrelation 

A portmanteau test is a test used for investigating the presence of autocorrelation in time series. The portmanteau 
test checks the pair of hypotheses: 

0 , ,: ... 0u i u hH      i.e. all lags correlations are zero. 

1 ,: 0u iH    for at least one i = 1, …, h, is tested, at least one lag with non-zero correlations. 

where , ( , )u i t t icorr u u   is the autocorrelation coefficients of the residual series. If tu


 are residuals from an 
estimated ARFIMA (p, d, q) model, the portmanteau test statistic is 
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t t uu u     are the standardized estimation residuals. The test statistic has an 

approximate 2 ( )h p q   -distribution if the null hypothesis holds. An advance version with potentially better 

small sample properties was proposed by Ljung and Box (1978) given as: 
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The null hypothesis is rejected if probability value is less than the significance level of  = 0.05. 

3. Data Analysis and Discussion 
3.1 Data Used 

The daily average rainfall data of 75 rain-gauge stations across peninsular Malaysia for the period January 1975 
to November 2008 obtained from the Malaysian meteorological department were used in this study. 

3.1.1 Results and Discussion 

The rainfall data sets from 75 gauged stations were first analyzed using OK technique. The reason behind this is 
to identify the location that realized highest rainfall for the period under study. Figure 1 gives the result of the 
OK displaying the spatial variability of rainfall amount in peninsular Malaysia with the location with the highest 
average rainfall amount for the period under study. 
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Figure 1. Spatial distribution of Peninsular Malaysia daily precipitations in millimetre averaged over the time 

period January 1975 to November 2008 

 
It can be observed in (Figure 1) that some other stations falls within the range of 7.6 and above signifying areas 
high average rainfall amount, but the interest in this study is particularly on single station with the highest 
amount (the station was selected using a defined threshold in the arcGIS software) so as to modelled the 
temporal behaviour of the rainfall in the identified station. In modelling the temporal behaviour of the rainfall 
time series of the identified station, the daily rainfall time series for the period January 1975 to November 2008 
of the identified station (Chui Chak) is used.  
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Figure 2. Time series plot for the daily rainfall of Chui Chak station 
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Figure 2 depicts time series plot of the daily rainfall of Chui Chak station, from the figure, the time series show a 
very persistent behaviour. The autocorrelation function (ACF) that provides a measure of temporal correlation 
between rainfall data points with different time lags is given in Figure 3. For a purely random event, all 
autocorrelation coefficients are zero, apart from lag 0, which is equal to 1 (Yusof et al., 2013). The 
autocorrelation function (Figure 3) decays slowly which indicate that the time series are strongly correlated 
which is a main feature of long memory appearance. Fractionally integrated processes possess genuine long 
memory in the sense that the present state of a system is temporally dependent on all past states (Rea et al., 
2007). 
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Figure 3. ACF plot for the daily rainfall of Chui Chak station 

 

The approach here follows fitting a suitable ARFIMA model to the daily rainfall series of the station identified 
by first transforming the data via fractional integration. The Geweke-Porter-Hudak method (GPH) was employed 
to estimate the fractional order of differencing d using bandwidth of 0.8. The value of d was found to be 
0.2070681 which falls within 0 < d < 0.5 indicating a long memory process. A stationary and invertible process 
can be represented either in a moving average form or in an autoregressive form. The problem of either of these 
representations, though, is that it may contain too many parameters even for a finite-order moving average and a 
finite order autoregressive model. In general, a large number of parameters reduce efficiency of the estimates. 
Hence, in building a good model, it may perhaps be essential to include both AR and MA terms in the model; 
this will leads to the useful mixture of ARMA process (Wei, 2006). The AR and MA orders p and q respectively 
of the ARFIMA model were identified and estimated using Box-Jenkins methodology. The results are given in 
Table 1. 

 

Table 1. Summary ARFIMA-GARCH estimation results 

Model 
ARFIMA parameters 

ARFIMA-GARCH 
parameters 

d 
1  

2  
1  

2  
3  

4    
1  

1  

Estimate 0.207 1.45 -0.609 1.354 0.463 0.058 0.026 36.77 0.149 0.690 

Std.err. 0.015 0.11 0.101 0.114 0.093 0.019 0.011 3.696 0.026 0.012 
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Figure 4. Autocorrelation function of residuals of the 
fitted ARFIMA model 

Figure 5. Autocorrelation functions of squared 
residuals of the fitted ARFIMA model 
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Figure 6. McLeod-Li test for the hetereoskedastic effect in the residuals of the fitted ARFIMA model 

 
The autocorrelation function (Figure 4) of the residual from the fitted ARFIMA model shows that the residuals 
are uncorrelated; therefore, the ARFIMA model seems to be adequate. However, the autocorrelation function 
(Figure 5) of squares of residual of the fitted ARFIMA model shows autocorrelation, this indicates the presence 
of hetereoskedastic effect and confirmed by Mcleod-Li test given in (Figure 6) which can be modelled using 
GARCH model. As mentioned earlier, the linear models e.g. (ARMA, ARFIMA etc) can only be sufficient in 
modelling the information confined in the autocorrelation of the differentiated time series, which is a low 
requirement and is not capable of modelling Heteroskedasticity. Due to this problem, the maximum likelihood 
method to estimate the ARFIMA parameters used to be biased when the error variance is not constant (De 
Montera et al., 2008). The remedy to this consists in modelling Heteroskedasticity as a nonlinear relationship. 
Therefore the residuals from ARFIMA model is augmented by a GARCH model, the results are given in (Table 
1). Table 2 gives the Ljung-Box test results for the ARFIMA-GARCH error model, it can be seen that both 
residual and squares of residual are uncorrelated meaning that no other hetereoskedastic effect left and this is the 
necessary condition to conclude that the model is appropriate. Therefore the addition of the GARCH (1,1) 
specification for the ARFIMA error helps to capture the serial correlations in the squared residuals.  
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Table 2. Ljung-Box test results for the ARFIMA-GARCH model 

Lag 
Residuals Sqr. Residuals 

Statistic P-value Statistic P-value 

Q(10) 5.090112 0.885077 8.693195 0.561446 

Q(15) 13.87522 0.535013 18.17034 0.253816 

Q(20) 18.29635 0.567893 19.18531 0.509810 

 
In the ARFIMA-GARCH (1, 1) model, the sum of   and   measures the extent to which the variance of 
current volatility remains significance for long periods into the future (i.e. volatility persistence). As this sum 
approaches unity, the persistence of variability to the volatility becomes greater. Moreover, when the sum of   
and   equals to 1, then any variance to volatility is permanent and the unconditional variance is infinite. In this 
case, the process is denoted an IGARCH and implies that volatility persistence is permanent; hence, past 
volatility is significant in predicting future volatility over all finite horizons (McMillan & Thupayagale, 2011). 
The volatility is said to be explosive if the sum of   and   is greater than 1, then, the variance to the 
volatility in one period will result in even greater volatility in the next period (Chou, 1988), as such the higher 
the volatility the riskier the security. 

It could be noticed that the sum parameters value for the ARFIMA-GARCH model is relatively high i.e. 
  = 0.839, therefore represent a relatively lasting persistence, that is the process variability should converge 
to the historical average after a relatively long period of time. 

4. Conclusions 
The spatial variability of rainfall time series is modelled using Ordinary Kriging technique in identifying the 
location with highest rainfall event in peninsular Malaysia. Chui Chak station realised to be the identified station. 
Moreover, the temporal dependence of the rainfall time series of the identified station is modelled via fractional 
ARIMA model augmented with the GARCH model. The Ljung-Box test for testing autocorrelation proves that 
the combined ARFIMA-GARCH model captures the temporal behaviours in the Chui Chak rainfall time series 
data. Thus, modelling the dependence in level and variability enhances our understanding for the properties of 
the rainfall series. Therefore the model could be a very good model for modelling rainfall for water resource 
management. 
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