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Abstract 
Glycerol as byproduct of biodiesel production is a very promising low-cost feedstock for producing a wide 
variety of special and fine chemicals. This great amount of glycerol needs to be converted into higher valuable 
products. One of glycerol’s derivatives potential is triacetin, a good bio-additive as anti-knocking agent. In 
previous work triacetin synthesis from glycerol and acetic acid using sulfuric acid catalyst has been conducted in 
batch and continuous process. In this work, triacetin was synthesized using reactive distillation. The continuous 
process has 98.50% of glycerol conversion with 8.98% of triacetin selectivity.  
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1. Introduction 
1.1 Introduce the Problem 

Glycerol is byproduct of biodiesel process and it is now regarded as a waste product due to tremendous growth 
of biofuel industry. Stoichiometrically, biodiesel production will generate 10% (w/w) glycerol. In other words, 
every gallon of biodiesel produced generates approximately 1.05 pounds of glycerol. This indicates a 
300-million-gallon-per-year plant will generate about 115,000 tones of 99.9 percent pure glycerin. However, this 
great amount of glycerol can be utilized as raw material to produce several high value chemicals such as 
monoacetin, diacetin and triacetin by acetylation process as shown in Equations 1 through 3.  
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       (2) 

Monoacetin   Acetic acid     Diacetin        Water 

     (3) 

 Diacetin Acetic acid Triacetin  Water 

There are several industrial synthesis alternatives for utilization of glycerol, one of them is acetylation process of 
glycerol and acetic acid. The products of this process has great industrial applications, such as triacetin has been 
used for pharmaceutical and cosmetics industry, while monoacetin and diacetin have been applied in cryogenic 
industry and used as raw material for biodegradable polyesters manufacture (Galan et al., 2009; Reddy et al., 
2010; Rahmat et al., 2010). Besides, triacetin is a promising alternative chemical to be transformed into fuel 
additive (Rao & Rao, 2011; Ferreira et al., 2009; Hou et al., 1998). Mixing 10% (w/w) of triacetin to biodiesel 
can give better performance as compared to the pure biodiesel (Zang & Yuan, 2001).  

1.2 Catalyst for Reaction 

Traditionally, the reaction of glycerol and acetic acid is carried out using homogeneous catalysts, such as 
sulphuric acid (Gelosa et al., 2003; Mufrodi et al., 2010; Mufrodi et al., 2012) and acidic functional ionic liquid 
(Li et al., 2009), H3PO4, HCl, HNO3 and H2SO4 (Khayoon & Hameed, 2011). This process has advantages 
including high activity (complete conversion within short time) and mild reaction conditions (from 100 to 
120 °C and atmospheric pressure). However, researchers have started to study heterogeneous catalyst for this 
reaction, due to its advantages.  

Several heterogeneous solid catalysts for synthesis of triacetin from glycerol and acetic acid has been explored, 
such as aminosulphonate (Liu et al., 2007), phosphotungstic, mesoporous silica with sulfonic acid groups 
(Melero et al., 2007), SO4

2-/ZrO2-TiO2 (Wu et al., 2007), Amberlist-15 15 (Zhou et al., 2013), K-10, Niobic acid, 
HZMS-5 and HUSY (Goncalves et al., 2008), Amberlyst-35 (Liao et al., 2010), ZrO2, TiO2-ZrO2, 
WOx/TiO2–ZrO2 and MoOx/TiO2-ZrO2 (Reddy et al., 2010). However, heterogeneous catalyst has complicated 
catalytically sites, i.e., chemically and geometrically for improving selectivity to a certain product.  

So far, homogeneous catalysis is widely used over heterogeneous in industry for the following reasons:  

a. Access to the reagents for homogeneous catalyst is easier since it is in solution, so there is improved activity 
and milder reaction conditions can be used.  

b. The heat transfer in homogeneous phase for highly exothermic or endothermic reactions is not a problem. 

c. Mechanisms are better understood.  

1.3 Continuous Process 

Current triacetin productions are mostly using batch-tank reactor. For a small capacity, batch system is very 
versatile, but for mass production, this process is tedious, labor intensive and low in productivity. However, 
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GC analyses were performed using an Agilent 6890N MSD 5975B with the specification of HP-5ms column 5% 
Phenyl methyl siloxane, Model Number: Agilent 19091S-433, the injector temperature of 548 K, the temperature 
at the detector: MS Quad was 523 K, injection volume of 1 micro liter, injector pressure of 3.27 psi. Materials 
GC standard are triacetin of 99% purity from Kanto Chemical Co. Inc. (Cat. No. 40224-30), diacetin of 97% 
purity from Kanto Chemical Co. Inc. (Cat. No. 10018-32) and monoacetin of 99% purity from Kanto Chemical 
Co. Inc. (Cat. No. 25371-32) and glycerol more than 99% purity from Waco Pure Chemical Industries Ltd. (Reff. 
No. 079-00614). 

3. Results and Discussion 
3.1 Effect of Packing Height  

The height of column is responsible for contact time between glycerol and acetic acid in reaction zone of RD 
column. That’s why knowledge of the packing height is essential for design of RD column to get the best 
optimizing performance of packing. The effect of the packing height to the concentration of monoacetin, diacetin 
and triacetin are shown in Figure 2. It shows that the increase of the height of packing would increase the 
concentration of the diacetin and triacetin. But the monoacetin concentration was decreased. It means that 
monoacetin was converted into diacetin and triacetin due to excessive contact time because of the height of 
column. The larger the contact area leads to the better reaction. Increasing of packing height as 19.5 cm would 
cause an increase diacetin and triacetin of 3.81 and 4.95% while monoacetin decrease of 3.39%.  

 
Figure 2. Concentration monoacetin, diacetin and triacetin as function of height of packing 

 

Glycerol conversion increased linearly with the packing height. The effect of packing height on the glycerol 
conversion is shown in Figure 3. The effect of packing height resulted in an increase concentration of triacetin as 
product. Triacetin conversion was increased as 0.0077% at 19.5 cm interval of packing height. Maximum 
conversion of glycerol in this process was 97.50%.  
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Figure 3. Conversion of glycerol as function of height of packing 

 

3.2 Effect of Acetic Acid to Glycerol Mole Ratio 

One common way to increase the reaction rate is using the excess amount of one of the reactants. Based on the 
stoichiometric calculation, 3 moles of acetic acid requires one mole glycerol to produce one mole of triacetin. In 
these experiments, the molar ratios of acetic acid to glycerol were varied 3, 4, 5 and 6. Le Chatelier’s principle 
stated that if a system in chemical equilibrium changes (concentration, temperature, volume or partial pressure), it 
will cause the equilibrium shifts to counteract the change. Consequently, the new equilibrium will be established. 
Changes in the concentration of reactant will shift the equilibrium to the side reactions that reduce the 
concentration. This case means the addition of one of the reactants will result in a shift towards product formation. 
Here, effect of ratio mol acetic acid to mol glycerol resulted in an increase concentration of triacetin as product. 
Increasing of one mole ratio of acetic acid to glycerol would cause an increase triacetin of 28.06%.  

 
Figure 4. Concentration monoacetin, diacetin and triacetin from bottom product as function of ratio mol acetic 

acid to mol glycerol 

 

The effect of ratio mol acetic acid to mol glycerol on the glycerol conversion is shown in Figure 5. Triacetin 
conversion was increased by 0.2941% at 1 mol acetic acid addition. In this process, the maximum conversion of 
glycerol obtained was 98.51%. It was higher than glycerol conversion using the same catalyst in batch reactor 
that was 96.30% (Mufrodi et al., 2012). 
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Figure 5. Conversion of glycerol as function of ratio mol acetic acid to mol glycerol 

 

3.3 Effect of Reflux Ratio (R) 

Reflux is an important part in the process of distillation. In this work, reactive distillation’s vapor at the top of the 
column output is condensed in the total condenser. Then the condenser discharge flow partly as distillate and 
returned to the RD column as reflux. Reflux ratio is the ratio between the amounts of fluid that is returned in the 
column compared with the distillate. Increase the reflux ratio can be generated by adding heat to the reboiler. 
Effect of reflux ratio also affects the results obtained. Figure 6 shows that the increase in reflux ratio of 0.1 
would increased diacetin and triacetin as 1.162% and 1.2% while monoacetin decreased as 2.085%. 

 

Figure 6. Concentration monoacetin, diacetin and triacetin from bottom product as function of reflux ratio 

 

The higher reflux ratio, R would lead to greater contact time between the reactants, resulting in the better product. 
The increasing of reflux ratio would increase the conversion of glycerol on the results. The average increasing of 
reflux ratio of 0.1 causes the increasing in conversions as 0.27747% (see Figure 7). 
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Figure 7. Conversion of glycerol as function of reflux ratio 

 

Table 1 shows the effect of variables to selectivity of monoacetin, diacetin and triacetin using continuous process 
of reactive distillation. The most affecting variable to the selectivity was the mole ratio of acetic acid to glycerol. 
The less affecting variable was the packing height. 

 

Table 1. The effect of packing height, mol ratio of acetic acid to glycerol and reflux ratio 

Variables 

 

 Selectivity, %  

Monoacetin Diacetin Triacetin 

Height of 

packing, cm 

19.5 55.090 40.868 4.042 

39.0 54.619 41.105 4.276 

58.5 51.557 43.992 4.451 

Mol ratio of 

acetic acid to 

glycerol 

3 50.2622 45.2166 4.5212 

4 47.3289 47.7309 4.9402 

5 44.1129 47.9439 7.9431 

6 41.6773 49.3450 8.9777 

Reflux ratio 

0.4 49.8031 44.1414 4.4137 

0.5 49.0219 45.8355 4.5875 

0.6 47.2429 46.4658 6.8142 

 

This paper only uses three groups’ tests for each variable. The next paper will discuss about reactive distillation 
simulation with expand the range of variables i.e. height of packing, mol ratio of acetic acid to glycerol and 
reflux ratio. The aim of simulation is to get the maximum selectivity of triacetin.  

4. Conclusion 
This paper studies acetylation of glycerol in continuous reactive column. The results show that acetylation by 
reactive column can be used to increase the conversion of glycerol and selectivity to triacetin. Adding acetic acid, 
increasing height of packing and reflux ratio resulted in an increase of triacetin selectivity. 
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