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Abstract

The AUV combines mostly in ball shell, cylindrical shell, taper shells and other rotary shells by thread coupling, bolt
coupling, wedge coupling and hoop coupling. This paper makes the finite element analysis and research on the
mechanics mode of a certain AUV with the analytic method. Based on the basic equation of theory of thin shells,
analysed every separated shells, and set up it's mechanics mathematical model, and analysed the combined shell with
the finite element method. At last, the final result validated the mathematical model. The method presented is effective
in analysing and dynamical designing of AUV structure.
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During the work progress of AUV, such as torpedo and mine, the shell endures the hydraulic pressure. The research of
vibration has important theory value and practical meaning on AUV. The AUV is combines mostly in ball shells,
column shells, taper shells and other rotary shells by thread coupling, bolt coupling, wedge coupling and hoop coupling.
Itisshowninfigure 1.

1. Thebasic theoretical equation of thin shell

A middle surface patch of thin shell and internal forces on the cross section are shown in figure 2. The parameters
N,,N,,N,,M;,M,,M,,,Q,Q, aretheinternal forces acted on « plane and g plane, k, and k, are the main
curvatureson o directionand £ direction, R and R, arethe radius of main curvature on the middle surface, and
k=YR ,k,=1R,, A and B are the Lame coefficients on « direction and S direction, p,, p,, p, ae the
component of loads on « direction , S direction and y direction, u, v and w are the component of
displacementson « direction, S directionand y direction of any point on the middle surface of shell.

The balanceable equations of basic equation in the thin shell theory are:
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From the geometrical equations (1.2) and the physical eguations (1.3) of basic equation in the thin shell theory, we can
reason out the elastic equations (1.4).
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The state of nonmomental theory supposed there are no both flexural moment and torsional moment on the any cross

section of thethin shell, thatis M, =M, =M, =M, =0 . Equations (1.1) are simplified (1.5).

1.1 The Cylindrical Shell
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The o -axis point to the generatrix and the g -axis point to the circumference of cylindrical shell, then, k =0,
k,=)/R and A=B-=1, the Gauss-Codazzi conditions are fulfiled. It is shown in figure 3. The balanceable equations
and dastic equations of cylindrical shell nonmomental theory are:

1.2 The Gyral Shell
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The parameter C, is the curvature center of point M on the gyral shell generatrix. It is shown in figure 4. The
curvatures are k =1/R (o« direction) and k,=1/R, (4 direction) on the middle surface. At the point M,

ds =Rde , ds,=R,sinedf, A=R,B=R,sinc.
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The Gauss-Codazzi conditions —(k1 A= and i(kZB) = kla—B are fulfiled:
ap ,B oo Jda

dB _1dkB__ dsna d(R,sina)

=R =R cose , then =R cose . The balanceable equations and el astic equations of gyral
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shell nonmomental theory are:
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The ball shell isthe special gyral shell,and A=B=1, k =k, =1/R intheball shell.
2. The axial symmetrical bending equations of thin shell
2.1 The Axial Symmetrical Bending Equations Of Cylindrical Shell

The internal forces, displacements and strains are axial symmetrical in the cylindrical shell. The internal forces reduce

toN,,N,,M,,M,,Q , and the displacements reduce tou , w. The axial symmetrical bending equations of the cylindrical
shell are:
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Dimensionless coordinate isbrought in, & = A, where 1 = (—— ) )
AR
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The approximate solution of equations (2.2) is made up of the nonmomental theory solution (w') and the edge effect
solution (w°), that is,

w=w +W =W +e*(C, cosé +C,siné) + € (C,cosé +C, siné) (2.3
In the equation (2.3), the edge effect solution (w°) is the solution on the effect of the flexural moment (M,) and the
lateral shearing force (Q, ) that are equally distributed along the boundary at the sideof o=¢£=0,

W= B @) -2 1)
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(2.4)
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Where, f,(£) =e* (cosé+siné), f,(£)=e*sné, f,(E)=e* (cosé -siné), f,(£) =€ cosé .
2.2 The Axial Symmetrical Bending Equations Of Gyral Shell

The parameters of the gyral shell, k =1/R ,k,=1/R,,A=R,B=R,sine, and on the condition of axial symmetrical
bend, N,=M,=Q,=0 and p,=0, theaxia symmetrical bending balanceable equations of the gyral shell are:
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The approximate solution of equations (2.5) is made up of the general solution of the homogeneous equation and the
special solution of the unhomogeneous equation. The specia solution can be solved from the nonmomental theory
equations, and the general solution , the edge effect solution, can be solved by hybrid method. Then the equations (2.5)
simplified to the equations (2.6).
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The basic functions are supposed, a)—%(M+u ), 9=-RQ.

2
The differential operator is supposed, L[w] = Rd ii)+Mi_Ctg_“
Rdo Rda” R do R

The basic differential equations that the axial symmetrical bending edge effect of gyral shell are:

o
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To ball shell, the curvatureradius R =R, =R areconstants, and ¢ =-RQ,, then,
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The effect of edge effect reduce rapidly with the distance increase to boundary, then the equations (2.8) simplified to the
equations (2.9):
d® o_ R

d® D 29
d_Qzl =—Fhw
do

The basic differential equations that the axial symmetrical bending of ball shell are:

d‘Q  EhR?
dfj 5 Q=0 (2.10)
EhR? 2
Dimensionless coordinate is brought in, 7 = 9o , where = ( )4 then,
‘3 (?3 +4°Q =0 (2.11)

Theinternal forces expressions are:
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N =[PL () + 2M & £, ()]ctga
= 2PA1, (1) - 2M ”;2 £,7)

M, =P 2 1,1+ M1, (1) *1

M, = uM,

Q =PE,(n)-2M £ 1,(1)

Where, f,(7) =e"(cosn+sinn), f,(n)=e"sinn, f,(n)=e"(cosn—-sinn), f,(7) =" cosn .
3. The analysisi of torpedo

The shell of torpedo is made up of ball shell, cylindrical shell, taper shells and other rotary shells by thread coupling,
bolt coupling, wedge coupling and hoop coupling. All of them are rigid coupling. The radius of ball shell R=0.25, the
length of cylindrica shell L=5.50, the thickness of shell h=0.005, the elastic modulus E =7.47x10"pa, the
Poisson’sratio = 0.36, inner pressure p, =10° pa.

It is shown the force analysis of the coupling of the ball shell and the cylindrical shell in figure 5.
From the balanceable equations of ball shell nonmomental theory, and R =R,=R, N,=N,, obtained the result:

(N =(N;), =22

From the balanceable equations of cylindrical shell nonmomental theory, obtained the result: (N;).=Rp,, (N;).=
Obviously, the circumferential direction internal force is not continuous on the coupling circumference, that

2
is(N,), = (N). , so, there is a direct displacement, and the radial aterations are: 5a, = Rp, —2(1-u), da.= E3 (1—%) .

2Eh

2
The direct displacement is not continuous, and the difference isaa:%. Thus, there must be Q, and M, that are

equally distributed along the circumference, so that the continuousness of the internal force and displacement are

ensured. Based on the theory of Timashenko, the rotations of the ball shell and the cylindrical shell are same along the
circumference, so M, =0, and the discontinuousness is avoided enough by Q, .

The direct displacement of the ball shell brought by Q, is §a1_— QO , and the cylindrical shell is da, = QD

3
o) )4 D= Eh 2
4R 12(1- u?)
According to the displacement continuous condition, da+da =0, then,

Thedifferenceis da =- Q3°
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The parameters are counted, then,
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When ¢=0.then f,(5)=1,(5) = f,(5) =1, ,(£)=0,
When n=0 ;then fu(m) = f3(m) = f,(m) =1, £,(m) =
Theresults of the cylindrical shell are:

10
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M, =% £,()=0,M, = uM, =0
Q =25 (§) = 3472
The results of the ball shell are:

N = PR 1200, N, = BR 4 BL ¢ 21 s

2
R
M, = =22 () =0, M, = uM, =0
Ps
=—22f =-3472
Q 8l 3(1)

Asaresult, the circumferential direction internal force isnot continuous on the coupling circumference.
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