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Abstract 

The finite element analysis and research on the vibration mode of a certain AUV with the analytic method are expatiated. 
Based on the basic equations of thin shells theory, this paper analyses and sets up the cylindrical shell vibration 
mathematical model, and validated the correctness of the model by ANSYS. The method presented is effective in 
analyse and dynamical design of AUV weaken vibration and low noise structure. 
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During the work progress of AUV, such as torpedo and mine, the power system activates vibration of the shell and 
causes noise radiation in hydro-medium. The radiating noise makes great affect on the concealment, and enlarges the 
enemy forewarning distance. The research of vibration has important theory value and practical meaning on AUV. The 
AUV is combines in spherical shell, cylindrical shell, conical shell and other revolutionary shells. The cylindrical shell 
is the primary, and the spherical shell and the conical shell are similar to the cylindrical shell, so the vibration mode of 
cylindrical shell is prevalent. This paper provides a method to calculate the eigenfrequency so as to validate the
structure plan. 

1. The balance differential equations of free vibration 

A middle surface patch of cylindrical shell and internal forces in the orthogonal coordinate system are shown in Figure 1. 
α  andβ  are the lines of main curvature, and γ  is the normal pointed to convex direction. 1N , 2N , 12N , 21N , 1M

2M , 12M , 21M , 1Q , 2Q  are the internal forces acted on the α  plane and the β  plane, 1k  and 2k  are the main
curvatures on the α  direction and the β  direction, R is the radius of the middle surface, and 1 0k = , 2k R= , A and 
B are the Lame coefficients on the α  direction and the β  direction, and 1A B= = , 1p , 2p , 3p  are the component 
of loads on the α  direction, the β  direction and the γ  direction. The plus directions of the internal forces are 
shown in Figure 2. 

The sum of all the internal forces components on the α  direction divided by d dα β  is 0, that is 0Fα =∑ , in the same 

way, 0Fβ =∑ , 0Fγ =∑ . The moment of all the internal forces to the α  axis is 0, that is 0Mα =∑ , in the same way, 

0M β =∑ , 0Mγ =∑ . After operated, the balance equations of the cylindrical shell are: 
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From the last two equations of equations (1.1), the expressions of 1Q and 2Q  can be reason out. The expressions 
reckoned in the former three equations and the affects of the cross shearing force2Q to the balance on theα direction and 
theβ direction are neglected, then 
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At the state of free vibration, according to D'alembert's Principle, the free vibration balance differential equations of the 
cylindrical shell are: 
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Where, m is the unit area mass of the cylindrical shell middle surface, u , v  and w  are the component of 
displacements on the α  direction, the β  direction and the γ  direction of any point on the middle surface. 

The geometric equations (1.4) and the physical equations (1.5) of the cylindrical shell are: 
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Where, 1ε , 2ε , 12ε are the inplane strains on the middle surface, 1χ , 2χ , 12χ are the bending strains on the middle surface

E  is the elastic modulus, µ is the Poisson’s ratio,D  is the bending strength, and 3 212(1 )D Eh µ= − . 

The strains are eliminated by combining the equations (1.4) and the equations (1.5), the result are brought into the 
equations (1.5), then, the free vibration balance differential equations of the cylindrical shell expressed by 
displacements are: 

2 2 2 2 2

12 2 2

2 2 2 2 2

22 2 2

2 2 2
2 2

32 2

1 1 1
( ) 0

2 2

1 1 1 1
( ) 0 (1.6)

2 2

1 1
( ) 0

12

u u v w u
p m

R Eh t

v v u w v
p m

R Eh t

h u v w w
w p m

R R EhR t

µ µ µ µ
α β αα β

µ µ µ
α β ββ α

µ µ
α β

∂ − ∂ + ∂ ∂ − ∂+ + + + − = ∂ ∂ ∂∂ ∂ ∂ ∂ − ∂ + ∂ ∂ − ∂ + + + + − = ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ − ∂ ∇ ∇ + + + + − =∂ ∂ ∂ 

Where, the differential operator is 
2 2

2
2 2α β

∂ ∂∇ = +∂ ∂ . 

2. The solution of free vibration eigenfrequency 

The solution of balance differential equations of free vibration can be solved by mixed method. Supposed 
circumferential load, that is 1 2 0p p= = , the internal force function ( , )ϕ ϕ α β= is brought in, and supposed, 
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The equations (2.1) and the equations (1.5) are brought in the third equation of the equations (1.2). The normal

displacement =
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shell vibrates freely by the force of inertia. The normal free vibration balance differential equations of the cylindrical 
shell, 
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Dimensionless coordinate is brought in, Rξ α= , Rη β= , the equations (2.2) evolved to: 
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Both of the two ends are supported, and the boundary conditions are, 

0 1 0 1( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 (2.4)l lw w M Mα α α α= = = =
= = = =

Supposed the expressions of the internal force functionϕ and the deflection w  are, 
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The boundary conditions (2.4) are fulfiled in the equations (2.5), and the equations (2.5) are brought in the equations
(2.3), 
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Equations (2.6) are simplified, that is, 
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If the coefficient determinants of abA and abB  are zero, ϕ  and w  are not identical to zero, that is, 
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then the eigenfrequency is, 
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Got the minimum value of aλ , that is, 1 R lλ π= , and supposed 0ab bd dω µ = , that is, 
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That is, 

4
2 2

2 2 2 3

22
( ) 0

( )
a

a b
a b

EhD

R

λλ µ λ µ+ − =+ , and
3

212(1 )

Eh
D µ= − , then 

2 2
2 4

2

12 (1 )
( ) (2.11)b a a

R

h

µµ λ λ−= −
The minimum value of bµ  is, 
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The minimum eigenfrequency can be computed by 1λ and 1µ , that is, 
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3. The analysis of a certain AUV shell and emulation by ANSYS 

The shell of AUV is made up of spherical shell, cylindrical shell, conical shells and other revolutionary shells by thread
coupling, bolt coupling, wedge coupling and hoop coupling. All of them are rigid coupling. The radius of the cylindrical
shell is 0.265R = , the length of cylindrical shell is 4.0L = , the thickness of shell is 0.005h = , the elastic modulus 
is 107.47 10E pa= × , the Poisson’s ratio is 0.36µ = , the unit area mass of the cylindrical shell middle surface is 9.781m = . 

The bending strength 
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The minimum eigenfrequency is, 
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2
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Emulation analysis of the cylindrical shell is operated using the ANSYS, and the minimum eigenfrequency is 84.77Hz. 

4. Conclusions 

Sum up, the error between the computational result and the emulational result of the minimum eigenfrequency is 1.53%. 
The different eigenfrequency can be calculated by different aλ and bµ , the error between the computational result and 
the emulational result of the eigenfrequency is no more than 5%. The method is effective in analyse and dynamical 
design of AUV weaken vibration and low noise structure. 
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