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Abstract

In this paper, we present a recurrent neural network for solving convex quadratic programming problems, in the
theoretical aspect, we prove that the proposed neural network can converge globally to the solution set of the problem
when the matrix involved in the problem is positive semi-definite and can converge exponentially to a unique solution
when the matrix is positive definite. [llustrative examples further show the good performance of the proposed neural
network.
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1. Introduction and model formulation

In this paper, we are concerned with the following quadratic optimization program:

minimize ¥ Ax+c’x (1)
2
subjectto Dx<b,x =0

and its dual

. 1
maximize —b’y-— 5 x" Ax 2)

subjectto —D"y—Ax<c,y=0

where A4e R™ is symmetric and positive semi-definite, De R"™",he R” ,and ce R". It is well known that quadratic
optimization problems arise in a wide variety of scientific and engineering applications including regression analysis,
image and signal progressing, parameter estimation, filter design, robot control, etc. In many real-time applications
these optimization problems have a time-varying nature, they have to be solved in real time. The main advantage of
neural network approach to optimization is that the nature of the dynamic solution procedure is inherently parallel and
distributed. Therefore, the neural network approach can solve optimization problems in running time at the orders of
magnitude much faster than the most popular optimization algorithms executed on general-purpose digital computers.
At present, there are several neural network approaches for solving quadratic programming problem. Next, we describe
the proposed neural network.

By the duality theorem of convex programming, (x",y") is an optimal solution to Eq.(1) and (2),
respectively, if and only if (x°, y*)satisfies the Karush-Kuhn-Tucker conditions

u=c+A"x+D"y>0, x=20, x'u=0 3)
v=b-Dx>0, y=0, y'v=0

We see that the above Eq. (3) may be transformed into the linear projection equation of the following form
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u = Py[u—Mu-q] )

Where Q={u=(x,y)e R"" |u>0},)/ = { 4 D T} g = {C} , notice that the matrix M is positive semi-definite
-D 0 b

because u” Mu = x" Ax >0 .and P, is a projection operator which is defined by P,(u) =[Py (u,), Py (u,),..., Py (ut, )

d, u, <d,

andfor j=1,2K ,n+m, P (u,)=1u, d.<u <h
Q i i i =% =

h, u; > h,

In particular, if h, = oo and d =0, then P, (u;)=(u,)" =max{0,u,}-
We can see that the optimal solutions of (1) and its dual (2) can be obtained by solving the project equation (4).

We propose a neural network for solving (1) and (4), whose dynamical equation is defined as follow:

%:(1+MT)(PQ(u—Mu—q)—u) (%)
Theorem 1. If 4" = (x",y")e R™™, is an equilibrium point of the proposed neural network, then x”, 5" is optimal
solution to Eq.(1) and Eq.(2), respectively. On the other hand, if x", j"is optimal solution to Eq.(1) and Eq.(2), then
((xH",(»H™" is an equilibrium point of the proposed neural network.

2. Preliminaries

This section, we introduce the related definitions and lemmas for later discussion.

Definition 1. If g:Q, e R' — R, then any nonempty set of the form

L(ry={ue Q,|gu)<r}, reR,

is said to be a level set of g.

Definition 2. A system is said to have globally exponential convergence rate with degree , at " if every trajectory

staring at any initial point u(t,)e R!satisfies the condition

Ju—u"[[<cq lut)—u" |l exp(=n(t—1,)) Vi1,
where ¢, and 7] are positive constants independent of the initial points.
Lemma 1 (Gronwall). Let # and Vv be real-valued non-negative continuous functions with domain { [t>1,}> let

a(t)y=a,(|t—t,|) Where g  isamonotone increasing function. If for r>¢  y(r)<a@)+ J” u(s)v(s)ds » then
' {
u(t) < a(t)exp ) v(s)ds |

Lemma 2: let Qbe a closed convex set. Then
V=P,V (P,(v)—u)=0 Vve R" YueQ
and

| Foy () = Py (V) [[<]| e = v | Vu,ve R"

Lemma3.let g:Q e R’ — R, where Q, isunbounded. Then for all level sets of g are bounded if and only if

1

limg(u*) =+ Whenever u* <D and |im||y* |= +oo-
k—e0 k—>o0

With the lemma 1 and 2, we can give the existence and uniqueness of the solution to Eq. (5).
Theorem 2. For each ,€R™" there exists a unique continuous solution (¢) for (5) with (¢ o) =1, OVEr [t 00).

Proof. Let T(u)=(I+M")P,(u—Mu~—q)—u).then T(y) is Lipschitz continuousin R"*"since for any
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u,ve R"™"
I 7@ =TSN +M" 1| (| Pyt = Mut = g) = Pov =My =) |+ [l =v)
SIT+MT [ @lu=v ]+ M | lu=v])
<IT+MT @M [u=v]
Thus for any u, e R™", there exists a unique and continuous solution (¢)of Eq. (5), defined in ¢, <¢<T, with the
initial condition u(t,)=u,- Let [t,,T) be its maximal interval of existence, we next show that 7 = o . From lemma 2,
it follows
IT@) =111 +M" ||| Py(u—Mu—gq)~u]
S| T+MT (| Mu+q |+ Py )= Po (') ||+ Py(u™)~u )
SNZ+MT @M D ITul+ g+ [+ P D
then

[u@ (=l | +j:|| T(u(s)) || ds

< (luy |+, = 1)+, [ J1uts) | ds

where k = I1+M" ||(|q||+|u"||+] Py’ )Dand k, =||T+M" | (2+]| M |)). Therefore, using Lemma 1 we have
u(@) 1< (lug || +k, (=20, 1€ [t,,T)-

Hence the solution u(¢)is bounded on [¢,,7).S0 T =co.

3. Convergence result

In the present section, under the assumption that Q" # @ . We prove the convergence of the proposed neural network.

Theorem 3. Let M is positive semi-definite, then the neural network (5) is stable in the sense of Lyapunov and
globally convergences to the solution subset of the problem (4).

Proof. First, definite
Fu)=(I+M")(Py(u~Mu—q)~u)-
Clearly, F(u)=0 if and only if » is a solution to problem (4). Thus the equilibrium point of the system in Eq.(5)

correspond to solutions to problem (4) because [+ M " is non-singular. Next, by theorem 2 we see that there exists a
unique and continuous solution y(¢) with any initial point 4, € R"*" for system (5).

Now let u, be any initial point taken in Q, and let u(t):u(t,to;uo)be the solution of the initial value problem

associated with (3). We then consider the following Lyapunov function
V=2 llu=u' B, ue R

where 4" e Q". Clearly, {im ¥ (u*) = +e0 Whenever the sequence w'cQ and |im ||u* ||= +oo-Thus by Lemma 3 we
k—>o0 k—>o0

see that all the level sets of J7 are bounded. On the other hand, using the technique of the proof from the literature, by
the properties of the projection operator we have forall ue R™"and all ye Q

[y—Py(u—Mu—q)" [Mu+q—u+P,(u—Mu—q)]>0.

Since " is a solution of the problem (4), forall ye Q

{(y—u"} {Mu" +q}>0

Taking y =y in the first inequality and taking y = P, (u—Mu —¢)in the second inequality and then adding the two
resulting inequalities yields

u —Py(u—Mu—q), {M@u—u")—u+P,(u—Mu—q)} >0

Then

W —u) Mu—u")+@—u" YL +M" )~ Py(u—Mu—q) 2| u~Py(u—Mu=q)|l;

Since is M positive semi-definite, it follows that

(u—u')" (L +M" )= Py u—Mu—q)) 2| u=Py(u—Mui—gq)|;

Therefore, we have

31



Vol. 2, No. 2 Modern Applied Science

4y AV du
dt du dt

=(u-u") [ +M")(Py(u—Mu-q)—u)

<—|lu=Py(u-Mu-q)|3<0
Thus V(u)is a global Lyapunov function for the system in (5) and the system (5) is stable in the sense of Lyapunov.
Since {u(r)|t = L cQ, where Q 0 = e QI V)<V (uy)} and the function ¥/ (x)is continuously differentiable on the
bounded and closed set Q, it follows from Lasalle’s invariance principal that trajectories u(7) will converge to E, the

largest invariant subset of the following set:

E:{ueﬂo|dV:0}
dt

It is easy to see that du/dt =0 ifand only if gV /dt=0. It follows that
E:{ue Q, |dV:0}:QO nQ’
dt

Which is a nonempty, convex, and invariant set containing in the solution set Q". So

limdis(u(t),E) =0 -

Therefore, the proposed neural network converges globally to the solution set of the problem (4).

Remark 1. If Ais positive definite then M is positive definite, too. Thus, form the proof of theorem 3 we can get the
neural network (5) is globally exponentially convergent.

Since

W —u) M@u—u")+@—u )L +M")u~Py(u—Mu—q) 2| u~Py(u—Mu=q)|l;
We have

@ —u)" Mu—u")+w—uYI+M")u-P,(u—Mu—q))>0

by Schwarz inequality we obtain

I T+M"|[|lu=Py(u=Mu=q) || 2 plu—u|

T
where ;-4 (@), thus
=P = Mu—q) |2 —*——||u—u" |
[ 1+M" |
So
d 2
EV(M)S—HM—PQ(U—Mu—C])H
2
U -
LS<———lu—u
1+M" | ” |
20’
<——H___yu
1+M" | “
Thus
V() SV (uy)e 2
2
where 5____H > (> and hence

1+M"|P
lu(®)—u" | <[luy—u" || e

Therefore, the proposed neural network is globally exponentially converges to the solution subset of the problem (4) if
M is positive definite.

—d(t—ty)

4. Simulation example

In order to demonstrate the effectiveness and efficiency of the proposed neural network, in this section, we discuss the
simulation results through an example. The simulation is conduct on Matlab, the ordinary differential equation solver
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engaged is ode45s.
Example 1. Consider the convex quadratic program
S 1
minimize x"Ax+c'x
subjectto Dx<b,x2>0

and its dual
- r 1 4
maximize -b'y-— 5 x Ax

subjectto —D"y—Ax<c,y=0

where
5/12 -1 35/12
2 1 -30
D 5/2 11, Az{ }, be 35/2 |, c={ }
1 0 1 2 5 -30
0 1 5

Its exact solution is (5, 5)”. we use the system (5) to solve the above problem . All simulation result show that the
solution trajectory always converges to the unique point " = (5.000, 5.000, 0, 6.000, 0, 9.000)” which corresponds to the
optimal solution (5,5)" and its dual solution (0,6,0,9)" . Let the starting point be (2,4,0,0,0,0)" and
(5,6,1,0,3,0) respectively. Figure 1 (a) and (b) show the transient behavior of the neural network for those starting
point, respectively.

al ‘ ‘ ‘ . | ‘ ‘

(0} 2 4 6 8 (0} 2 4 6 8
time time
@) (b)

Figure 1. Transient behavior of the neural network (5) in example 1
(a) the initial point(2, 4, 0, 0, 0, 0)” ; (b) the initial point (5, 6,1, 0, 3, 0)"
5. Conclusion

In this paper, we have presented a recurrent neural network for solving convex quadratic programming problems, in the
theoretical aspect, we have proved that the proposed neural network can converge globally to the solution set of the
problem when the matrix involved in the problem is positive semi-definite and can converge exponentially to a unique
solution when the matrix is positive definite. Illustrative examples further show the good performance of the proposed
neural network.
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