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Abstract 
An analytical general solution is derived for reasoning uncertain knowledge by multiple sub-model integration. By 
choosing decision rule for each specific instance, a decision forest rather than a tree will be constructed, thus all 
relatively independent attribute sets can be determined automatically without any human intervention. Necessary 
discretization for mixed-mode subset will be processed based on post-discretization strategy to minimize information 
loss. 
Keywords: Multiple submodel integration, Decision forest, Post-discretization strategy, Conditional independence 
assumption 
The volume of data for discovery of decision rules and recognition of patterns is growing at an exponential rate, both in 
the number of attributes (features) and objects (instances). One way to reduce computational complexity of knowledge 
discovery is dimensionality reduction, which includes projection pursuit, factor analysis, and principal components 
analysis. In artificial intelligence, decomposition methodology is a major tactic both for ensuring the transparent 
end-product and for avoiding the combinatorial explosion. And for this, the conditional independence assumption has 
been widely used, e.g. in Bayesian network structure learning. However, despite its popularity, the independence 
assumption always supposes that all attributes are discrete and continuous ones have to be discretized before learning 
even at the cost of information loss. Wang et al. reported that an unsteady special solution, which supposed that 
continuous feature subset and discrete subset are independent. This paper presents an analytical general solution to 
further handle mixed-mode subset based on decision forest construction to divide original feature space into several 
parts automatically. 
Suppose instance space D with mixed-mode data has two types of attribute sets. The first k attributes are continuous and 
others are discrete. After pre-discretization the conditional independence assumption can be expressed as: 

 
Where lower-case letters denote specific values taken by corresponding attributes (for instance, xi represents the event 
that Xi = xi). And △i is arbitrary interval of the values of attribute Xi, )(⋅P  refers to the probability. The following result 
can be formulated based on bayes theorem and differential theorem: 

 
Where ),,(),,|,,( 111 nknkk xxPxxxxp ΛΛΛ ++=α  is constant irrelevant to class value. )(⋅p  refers to the probability 



Vol. 2, No. 2                                                                  Modern Applied Science 

 10 

density function. Maximum likelihood estimation is chosen to estimate probability and joint probability, and 
Kernel-based density estimation is chosen to estimate conditional probability density function: 

                                                                 (3) 
where ),,1( lkxik Λ=  is the corresponding value of attribute Xi when C = c, )(⋅K  is a given kernel function 

2/2/1 2

)2()( tetK −−= π . And hi is the corresponding kernel width, m is the number of training instances when C = c.  

Let {T1,…,TP} denotes a decomposition of the attribute set A into p mutually independent subsets, each containing 
discrete and pre-discretized attributes or continuous input attributes. The aim of classification is to decide and choose 
the class that maximizes the posteriori probability, an analytical general solution based on conditional independence 
assumption can be obtained as follows: 

                                                             (4) 
Where ti and P(c|ti) denote any reasonable combinations of attribute values in subset Ti and the classification accuracy 
of submodel constructed by ti, respectively. ti and P(c|ti) can be determined flexibly during the learning procedure of 
decision forest, which is composed of a set of decision trees. Attributes in the same tree should be dependent, while 
independent classification rules should be in different trees as the independent assumption suggests. 
The original information entropy of class attribute C for instance space D is: 

                                                                      (5) 
The information entropy of C for subspace D’ which satisfied Xi = xi is: 

                                                                      (6) 
The Gini index defined above just consider the information that each attribute value rather than specific attribute gave 
to class label. Since it is applicable to both continous and discrete attributes, the information loss caused by 
pre-discretization can be effectively avoided. The first part of Eq.(6), which describes the information entropy of class 
label itself, is the same to all attribute values. Thus the second part of Eq.(6) should be considered only during test 
selection procedure, that is to maximize the conditional information entropy. The construction procedure of decision 
forest can be described as follows: 

Input: Training set D with n predictive attributes and N instances. 
Output: Decision forest composed of n decision trees at most. 
1. As to any given instance },,{ 1 nxx Λ , sort all attribute values according to the Gini index defined in Eq.(6) and select 

the one xi which maximize the Gini index as the root node. 
2. As to continuous values, the discretized interval △i and the scope of the next subspace are determined to minimize 
information loss. 
3. Search for the next attribute value as the branch node in the instance subspace which satisfies Xi = xi if Xi is discrete 
or  

iiii xXx ∆+≤≤  if Xi is continuous, until the class label is the same or height of the decision tree is n. Then a leaf 
node is generated. Each path from root node to leaf node is corresponding to a classification rule, and the pre-condition 
is the combination of all attribute values in this path. 
4. Apply the learning procedure described above recursively, after N iterations each instance can be assigned a 
classification rule. 
5. Combine those rules which have the same root node, then subtrees or relatively independent classification rules can 
be determined automatically without any human intervention. 
6. Prune rule sets in each subtree repeatedly until this will not help to improve classification accuracy. 
7. Eliminate those rules that will result in high misclassification rate. Then decision forest with more powerful 
expressive ability to uncertain knowledge is constructed. 
The continuous attributes in mixed-mode subset have to be discretized in step 3. According to post-discretization 
strategy [8], the boundary of continuous attribute Xi can be decided based on information gain: 
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Where S is sorted sequence of the attribute values, N is the number of instances in set S, △(Xi,B; S) = log2(3k - 2) - 
[k×Ent(S) -k1×Ent(S1) - k2×Ent(S2)], and {S1; S2} are any given adjacent partitions. Ki  is the number of class labels 
represented in set Si. In order to evaluate the performance of submodel integration of decision forest, we conducted an 
empirical study on 12 data sets from the UCI machine learning repository to compare it with C4.5 release 8. Each data 
set consists of a set of classified instances described in terms of continuous or discrete attributes. Since the essence of 
submodel integration can be considered as partial leave-one-out validation, we also applied it to C4.5 release 8. Figure 1 
summarizes the experimental results and from it, the superior generalization accuracy of submodel integration can be 
clear4ly seen. 
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Figure 1. Comparison of classification performance % (Decision Forest-C4.5) 

 
 




