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Abstract 
The randm sum distribution plays an important key in statistical science as well as with insurance program, 
biotechnology and applied medical science. Saddlepoint methods are considered to be random sum variables 
with dependent elements supposing presence of the Moment Generation Function (MGF). Saddlepoint methods 
are influential instruments for getting precise terms for distribution functions in closed form. However, the paper 
also, discusses the Saddlepoint methods to the Cumulative Distribution Function (CDF) for Poisson-Binomial 
model in discrete form.  
Keywords: random-sum distribution, poisson-binomial model, saddlepoint approximation, cumulative 
distribution function 

1. Introduction 
Saddlepoint method is influential way in having precise terms for distribution function which is not recognized 
in closed sitting. Saddlepoint approximation almost surpass other techniques regarding calculating expenses; 
while it does not inevitably surpass them concerning accuracy. The most basic Saddlepoint method was launched 
by Daniels (1954) and is fundamentally expression for approximating CDF and discrete distribution function 
through its MGF. Saddlepoint methods are constructed by supposing existence of the MGF or, equally, the CGF, 
of random variable. However, for improvement to the Saddlepoint methodology and associated techniques, as 
references, Skovagaard in 1987 proposed a conditional version of this approximation, Daniels (1954, 1987) 
reported details concerning density and mass approximation, in 1999 Borowaik discussed a tail-area 
approximation with a uniform relative error, Reid in 1998 indicated applications to inference, and Terrell (2003) 
proposed a stabilized Lugannani-Rice formula. However, this paper will use Saddlepoint method to estimate the 
random-sum based on MGF for Poisson-Binomial model. For all real values of x , random variable X was 
presumed to have mass function ( )p x  identified. Subsequently, the MGF is identified as 

( ) ( ) ( )sx sx

x

M s E e e p x




   , (Hogg & Craig, 1978)                   (1) 

Over values of s for which the integral converges and the convergence is constantly certain at s 0  and it 
should be supposed that ( )M s coverage over largest open neighborhood zero as ( , )a b . However, the CGF is 
known as 

( ) ln ( )K s M s , ( , )s a b , (Johnson et al., 2005)                    (2) 

For discrete integral-valued random variable X, the saddlepointa approximation for its mass function ( )p x , 
based on the CGF K is given by  

1
ˆ ˆ ˆ( ) exp( ( ) )

ˆ2 ''( )
p x k s sx

K s
 


                               (3) 

where ˆ ˆ( )s s x  denote the unique outcome to the Saddlepoint equation  
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ˆ'( )K s x , xx  

xx and x  is the inner part of the span that powered by X (Butler, 2007). Saddlepoint expression (3) is 
calculable for any value in x , however, the plot of ˆ ( )p x  is significant as an approximation to ( )p x  merely 
for integer-value. 

Daniels (1987) initiated, two stability approved adjustments for discrete integral-valued random variable X for 
univariate cumulative distribution functions (CDF) that are presented below. 

1.1 First Continuity-Modification 

Assume xx , in order that the saddlepoint equation could be solved at value x, the first approximation is 

3

2

1

1 1
ˆ ˆ1 ( ) ( )( )

ˆ ˆ

ˆ ( )
1 (0) 1

0.5
2 2 (0)

6 (0)

r

w w if x
w u

P X x
K

if x
K

K

     
            

                  (4) 

ŵ  and 1û are known by 
0.5

0.5
1

ˆ ˆ ˆ ˆsgn ( )[ ( )]

ˆ ˆ ˆ(1 exp( ))[ ''( )]

w s sx K s

u s K s

  

  
 

and the saddlepoint ŝ  solves ˆ( )K s x . The symbol   and   indicate the normal probability distribution 
function (PDF) and the CDF correspondingly as well as ˆsgn( )s  takes sign ( )  for ŝ  (Butler, 2007). 

1.2 Second Continuity-Modification 

Describe .05 xx x      as the continuity-modification or offset value of x. The second approximation solves 
the offset value of saddlepoint equation ( )K s x  . The saddlepoint s and x are employed to change the 
inputs into the cumulative distribution function approximation consistent with 

2

2

sgn( ) 2[ ( )]

2sinh( ) ''( )
2

w s sx K s

s
u K s

 



   

 
                              (5) 

This leads to the second continuity-modified approximation 
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, (Butler, 2007)           (6) 

1.3 Third Approximation 

This approximation is indicated as 
3

ˆ ( )rP X x and employs expression (6) with 2w  as in (5) and 2u  
substituted with 

3 ''( )u s K s   , (Butler, 2007)                             (7) 

2. Claim Frequency Models (Daniel, 2008) 
Numerous procedures in daily life that calculate events up to a special stage in time could be precisely explained 
by the supposed Poisson process; now a Poisson process will be defined. Firstly, a Poisson process known as a 
compilation of random variables ( )N t  per t about particular group. Explicitly, Poisson process is a reliable 
form: in every 0t   they calculate the incidents that occur through time 0 and time t. The type of incidents 
relies in the function. One may desire to calculate how many incidents cases claimed via a private made, or how 
many calls for assistance and how many persons quit from a special company etc. No matter what you may 
consider by an “incidents”, ( )N t  indicates the incident numbers that happened following time 0 to that moment 
and comprising time 0t  . Consider that (0)N  is regarded to exact 0 signifies no incidents could be happened 
sooner than you begin calculating. As when the incident take a place and supposed to be a random, ( )N t  is a 
random variable to every value of t. Consider that N itself is presented random process, however, differentiating 
it from random variable ( )N t at every value of 0t  . Furthermore, to recognize the counting process, it 
required to comprehend the connotation. In addition, the probability response through the amount of 
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( ) ( )N t h N t   in time t to time t h , where 0h   and certainly 0t  . Because ( )N t h  equals to the 
number of incidents up through t h  and ( )N t  equals the random number up through t, the growth is merely 
the random number of incidents happening firmly after time t and up through and comprising time t h . 
Consider that ( )N t  itself could be regarded as an increase, explicitly from time (0) to time t, given that 

( ) ( ) (0)N t N t N  (Daniel, 2008). 

In Poisson process the balance that incidents are generally happening is very significant.  

The proportion of function   reports the average as ( )t  at time t. Consider that the average could vary with 
time, however, the rapidity of a vehicle the average at which it is passing distance could differ with time. You 
obtain the total distance passed by a vehicle through a time period by multiplying the average by the length of 
the time interval, provided the average is a constant; if the average varies, to merge the average function over the 
interval, which gives the same outcome as the simpler formula when the average is constant. As well as, to 
merge Poisson process’s average function over an interval we gain the average of incidents in that period (Daniel, 
2008). 

2.1 Definition and Properties of Poisson Random Variable  

A Poisson random variable Y with mean   is a random variable with the subsequent characteristics: 

1) It is only potential values are the positive integers 0, 1, 2, 3, ... and 

2) Pr[ ]
!

xe
Y x

x



     

Within these characteristics we can find that 

3) E[Y] = Var[Y] = . 

The meaning of the previous explanation of Poisson processes.  
2.2 Definition and Characteristics of Poisson Process  

A Poisson process N with rate function   has the next properties: 
1) N is a counting process (0) 0N   and for 0t   ( )N t is non decreasing and accept only positive integer 

values 0, 1, 2, 3, ... and, thus, it could be regarded as the random number of incidents of significance 
happening after time 0 and by time t. 

2) N has separate increases of any group of increases ( ) ( )i i iN t h N t   for 1, 2,...,i n  is separate for any 
positive integer n, given that the time intervals ( , )i i it t h  are interference (interference at an endpoint is 
acceptable).  

3) Every 0t   and 0h  , the increases ( ) ( )N t h N t   is a Poisson random variable with mean

( )
t h

t

z dz


   . 

4) If the rate function   is indeed stable, afterward, N is described a homogeneous Poisson process. In usual 
practice, Poisson process has typically implied “homogeneous Poisson process”, whereas “non-homogeneous 
Poisson process” has been employed to signify a rate function that isn’t stable. However, the terms must not 
puzzle you, because you could constantly observe to perceive whether   is stable. Moreover, you observe 
declarations such as “events happen at the Poisson rate 3 per hour”; this is stenography for “events are happening 
consistent with a Poisson process with stable rate function 3  per hour”. 

2.3 Random-Sum Poisson Process 

Companies offer medical insurance to their staff, they are certainly worried from frequent prompts, the random 
number of prompts occurred. Furthermore, they are worried from prompts strictness, the random size of every 
claim. However, they are particularly worried from the total sum of every one of the prompts. The total of the 
random numbers of random variables, and as it should really difficult to be analyzed. However, the probability 
distribution is identified as the random sum distribution.  

2.3.1 Definition of Random-Sum Poisson Process 

The random-sum Poisson process Y has the subsequent properities: 

1) For 
( )

1

0, ( )
N t

j
j

t Y t X


  . 
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2) N is the Poisson process with rate function  ; 

3) Every random variable jX  has similar distribution as a single random variable X; 

4) For all t, the random variables ( )N t  and all the jX  from independent group;  

5) If ( )N t  equal 0 for a special value of t, after that the empty sum ( )Y t  is regarded to be equal 0, thus, 
specifically, (0) 0Y  . 

The number of N is linked with the frequent prompts in the specified group of the policies and regulation. The 
general distribution of X1, X2, … is indicated by X. Consider X forms the sum of a random prompts made in this 
file of insurance contract. Once the frequent prompts N with a constant parameter  follow a Poisson distribution, 
the total prompts Y is supposed to have a random-sum Poisson distribution with mean  E N   and the 
variance   2[ ]Var Y E X  . The MGF is given by 

( ) [ln ( )] exp[ ( ( ) 1)]Y N X XM s M M s M s                            (8) 

3. Numerical Example 
Assume that vehicle accident prompts are submitted with a vehicle insurer at the Poisson rate 5   per hour, 
and that independent X of persons badly hurt in every accident are Binomial random variables with parameters 

2n   and 0.2p  . Subsequently, the total number Y of those badly hurt is a random-sum Poisson process. As 
previously showed, random sum Poisson process are extremely difficult and hard to investigate, and, therefore, 
approximation techniques are frequently employed. Saddlepoint methods defeat this difficulty. Saddlepoint 
methods are influential tool for getting precise expressions for distribution function that isn’t recognized in 
closed form. Saddlepoint methods roughly surpass other techniques regarding calculating expenses, while it does 
not inevitably surpass them concerning correctness. 

The total ( )Y t  are supposed to have a Poisson-Binomial random-sum distribution when i.i.d. random variables 
,

iX s  follow Binomial ( , )n p  distribution. The MGF of a total of prompts Y is identified as 

( ) ( ) [ln ( )]Y t N XM s M M s , (Hogg & Tanis, 1983)                      (9)
 

where “ln” is the natural log function.  

Furthermore, the CGF of a total of prompts Y identified as the CGF for N is known by 
s

N N(s)=ln[ M  (s)]= (e 1)K                                  (10) 

And for ,
iX s  follow Binomial ( , )n p distribution, the CGF is described as  

X X(s)=ln[ M  (s)]= ln( )s nK pe q                             (11) 

Where 1p q  . Subsequently, it possible to drive the CGF for the Poisson-Binomial random sum distribution 
as  

( ) ( ) ( ( )) [( ) 1)]s n
Y t N XK s K K s pe q                              (12) 

In this case the saddlepoint equation is  

1
( )

ˆ ˆˆ( ) ( )n
Y t

s sK s n pe pe q                                    (13) 

Next, the saddlepoint can be found as ˆ ˆ( )s s x  which indicates as the only conclusion to the saddlepoint 
formula ˆ'( )K s x . 

However, second and third derivative of the CGF ˆ''( )K s as well as ''' ˆ( )YK s also 

2 2
( )

ˆ ˆ2ˆ( ) ( 1) ( )n
Y t

s sK s n n p e pe q       

3 3
( )

ˆ ˆ3ˆ( ) ( 1)( 2) ( )n
Y t

s sK s n n n p e pe q        

This leads to the saddlepoint mass function for Poisson-Binomial random sum which is known as 

ˆ

ˆ ˆ2 2 2

1
ˆexp( [( ) 1) )

2 ( 1) ( )
ˆ ( ) s n

s s n
pe q sx

n n p e pe q
f x


   

   
              (14) 

Also the saddlepoint method to CDF for Poisson- Binomial random sum presented below. 

3.1 First Continuity-Modification 

The first continuity-modification will be described as: 
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ˆ

ˆ ˆ2 2 2
1

ˆ ˆ ˆsgn( ) 2( [( ) 1)])

ˆ(1 exp( ) ( 1) ( )

s n

s s n

w s xs pe q

u s n n p e pe q 

    

     
                       (15) 

This leads to the first continuity-modified method known in expression (4). 

3.2 Second Continuity-Modification 

The second continuity modification will describe .05 xx x      as the continuity-modified or offset value of 
x. The second method solves the offset saddlepoint equation ( ) 0.5K s x   ; and the saddlepoint s  and x are 
employed to change the inputs into the CDF method consistent with 

ˆ
2

ˆ ˆ2 2 2
1

ˆ ˆ ˆsgn( ) 2{ ( 0.5) [( ) 1)]}

2sinh( ) ( 1) ( )
2

s n

s s n

w s s x pe q

s
u n n p e pe q 

    

   


                       (16) 

Subsequently, the second continuity-modified approximation specified in expression (6) will be found.  

3.3 Third Approximation 

This approximation is indicated as 
3

ˆ ( )rP X x and employs expression (6) with 2w  as in (16) and 2u  
substituted with 

ˆ ˆ2 2 2
3 ( 1) ( )s s nu s n n p e pe q                                  (17) 

4. Conclusion  
This study indicated that, the saddlepoint methods to the CDF for random sum Poisson-Binomial distribution in 
discrete form. Furthermore, the methods estimate the random-sum variable components assuming presence of 
the MGF.  
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