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Abstract 

This paper deals with the problem of model identification, calibration and validation for traffic countings on 
two-lane rural highways. A criterion for preliminary selection of arrival laws as a function of appropriate sample 
statistics and a technique for deciding whether sample data sets of traffic counting are congruent with stationary 
time series behavior are suggested; besides arrival laws currently used in research and engineering practice, the 
Neyman distribution has been also applied although it is not frequently implemented in the field of traffic 
engineering. Moreover, this work aims at applying these methods to a set of empirical data derived from a recent 
survey on two two-lane rural highways; the arrival laws that best agree with the observations are found and the 
relations between the parameters identifying the arrival laws and the flow rates are worked out. Finally, the 
results have been compared to those achieved in similar observations, carried out by one of the authors in the 
past. 
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1. Introduction 

Traffic counting represents the first and, to this day, foremost empirical measurement designed to research on 
vehicular flows; counting distributions have direct relevance to discrete-time point processes applied to road 
traffic (Bertò, Schoen, & Speranza, 1996). Statistical models for traffic counting, also known as probabilistic 
arrival laws, and vehicular headway distributions (Mauro & Branco, 2012; Ha, Aron, & Cohen, 2012) are used in 
road and highway engineering, i.e. in traffic simulation procedures, in vehicle density estimations as well as in 
the study of the waiting phenomena at intersections and barriers. From the beginning of the 30s until the late 70s, 
special attention was devoted to theoretical and application aspects of these topics. Important studies have been 
made by Kinzer (1933), Adams (1936), Breiman (1962) and Gerlough and Barnes (1971). Helpful guidelines for 
traffic engineers about the study and application of counting distributions are also contained in Gerlough and 
Huber (1975) and in May (1990). After a few decades theoretical research has restarted and some works in the 
field have been produced by Jabari and Liu (2012), Clementi, Monti and Silvestri (2011) and Cao, Tai and Chan 
(2012) who have analysed some statistical models for counting distributions. 

Since the 30s Poisson law has been proposed for theoretical distribution of arrivals, in that it is a peculiar flow 
model for discrete events under conditions of statistical regularity. Some interesting generalizations about this 
law have been subsequently made along with the progress of research on the issue of vehicular arrivals. Poisson 
law was introduced by Kinzer (1933) for the elaboration of certain aerial surveys on traffic, previously carried 
out by Johnson (1928). Afterwards, it was applied by Adams (1936) for further numerical exemplifications and 
by Greenshields, Shapiro and Ericksen (1947) in a work on intersections. A lot of applications of this traffic 
model have been later suggested by Gerlough, first in a book entirely on the topic (Gerlough, 1955) and more 
recently, in collaboration with others, in a paper that also deals with further theoretical distributions that may be 
used as arrival laws (Gerlough & Barnes, 1971). Finally, certain realistic models of vehicular flows leading to 
Poisson arrivals are described in Breiman’s (1962, 1963) and Weiss and Herman’s (1962) researches. 

In the study of traffic conditions for which Poisson model is not useful, various scholars have suggested and 
sometimes verified through experimentation different counting laws. Specifically, among the most interesting 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 6; 2013 

68 
 

contributions to applications, Beckmann et al. have proposed a simple binomial distribution model (Beckmann, 
McGuire, & Winsten, 1956); Haight (1959) has introduced the generalized Poisson law and studied it with 
reference to real cases in collaboration with others (Haight, Whilser, & Mosher, 1961); Buckley (1965) and 
Drew (1965) have researched the possibility of applying the negative binomial distribution; and, once again, 
Buckley (1968) has further generalized the Poisson law. Theoretical works which propose counting models, 
barely or not at all verified through empirical validation, cannot be predominantly neglected. Oliver and Thibault 
(1962), Buckley (1965), Buckley (1967), and Serfling (1969) can be consulted on such a type of law. 

Finally, Ha, Aron and Cohen (2012) can be referred to for most recent results; they have introduced innovative 
models for time headway and counting distributions, supported by empirical researches on French roads. 

2. Probabilistic Models for Arrivals 

Results from experiments have shown that according to the statistical hypothesis Poisson law is, at the roots of 
its deduction, correctly applicable as a model for arrivals, on one or multiple lanes, if in the observed interval: 

a) the phenomenon remains stationary, i.e. no external perturbation intervenes and affects flows; 

b) the gap between vehicles is such that they do not influence each other. 

Under traffic conditions in which the vehicles are not farther apart than the distance at which they do not interact 
with each other, the circumstance b) involves that the lower the flow, the more consistent with empirical data is 
the model. Considering the results from this research, the authors suggest to apply the model to flow rates up to 
400÷500 vph in ordinary road conditions (dry weather, daylight, pavement in good conditions). Thus, Poisson 
law cannot generally be used without stationarity and on high flow rates; if these two conditions are not met, 
other probability laws are to be adopted. The criterion for choosing alternative counting models, presented in the 
literature and exposed in Gerlough and Huber (1975), is described below. 

If the mean x  and variance s2 of the sample turn out to be substantially equal, one can assume that the 
statistical distribution may be close to Poisson law. According to such a law, the mean  and variance 2 turn out 
to be equal and this value completely defines the model. For the sake of simplicity, this paper does not deal with 
other statistical laws for which  = 2. If the mean of the sample turns out to be higher than the variance, the 
measure variability can be deduced as lower than that expected from purely poissonian arrivals of equal mean. 
Should that be the case, the empirical data can be checked to see how consistent they are with the positive 
binomial model or with the generalized Poisson model, according to which the mean is generally higher than the 
variance. Also the quantities  and 2 completely identify both distributions. In terms of traffic, the circumstance 
x > s2 has been found on a frequent basis in flow conditions far from the free flow circulation, when flow rates 
usually present a very high volume. Finally, if the mean of the sample is lower than its variance-in other words, 
for a given mean value countings appear to be more dispersed than those derived from purely poissonian 
arrivals-the negative binomial distribution, also known as Pascal’s law, should be generally determined, in that it 
presents, like the data, a lower expectation than the variance 2. Also in this case, mean and variance 
completely identify the model. Cases of traffic countings where x > s2 and in the presence of compliance with 
Pascal’s law have been mainly observed in flow conditions developed under traffic-light regulation, although 
Buckley (1967) has used this distribution as a model for arrivals on roads with two or more lanes. 

Table 1 summarizes the criterion for choosing a model according to the mean x  and variance s2 values. 

 

Table 1. Selection criteria for traffic counting models 

Value of s2/ x  Suggested distribution 

> 1 negative binomial 

 1 Poisson 

< 1 binomial or generalized Poisson 

 

Table 2 shows the probability distribution of the binomial, Poisson and negative binomial random variables with 
their parameter expressions as a function of the sample statistics x  and s2. 

It is worth remembering that the choice for the length of the subdivision intervals t of the observation period T 
is known to influence the identification of the model, as well explained by Gerlough and Barnes (1971). For 
example, this means that, in the same period of observation, a flow can be Poissonian if the data are recorded on 
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subintervals t1, but on the other hand it can conform to other models if t2 < t1 are used. As for the estimates 
shown in this paper, the width of the interval was predetermined by the assumptions about the minimum 
extension of the periods of stationarity. Moreover, the duration T of the observation period, at a constant length 
of the subinterval of subdivision t, has been proved to affect the ratio xs 2 : the bigger the interval T, the bigger 
the ratio xs 2  (Miller, 1970). 

 

Table 2. Theoretical distributions of arrival: probability distribution, mean, variance, parameters estimate 

Distribution binomial Poisson negative binomial 

probability distribution   xnx p1p
x
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In addition to the selection criterion indicated in Table 1, a further criterion for the preliminary choice of the 
model, as a function of appropriate statistical data, is shown. In some research areas (e.g. Biometrics) (Gore & 
Paranjpe, 2001), this criterion is more efficient than the simple comparison between the values of mean and 
variance: in order to have a greater amount of information than that gained only from the comparison of 

xsI 2  with μσI 2 , the parameter 2
3 smL  can also be compared with 2

3μL  , where μ3 is the 
theoretical third central moment and m3 is the corresponding frequency moment. On the plane (I,O,L) the point 
(I,L) is placed on a different position for each different theoretical distribution (Figure 1), lying on the segment 
AC if it is representative of a binomial distribution, on the half-line with origin in C if it is representative of a 
negative binomial distribution, and coinciding with the point C if it is representative of the Poisson law (Ord, 
1972). 

The positioning of the sample points  L,I  on the plane (I,O,L) near the Loci previously defined can be helpful 
for the choice of the theoretical distribution that best fits the sample data; however, the statistical hypothesis can 
be verified by applying a test of hypothesis to the chosen model.  

 
Figure 1. Probability distributions on the plane (I,O,L) 

Binomia

Neyman A 

Negative Binomial 
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This method is very useful and easy to implement, but on the other hand it is not always univocally 
discriminative, as later shown in this work. In Figure 1 the curve L = f(I) of the Neyman type A biparametric 
distribution is also illustrated. The probability distribution of the Neyman type A is: 

   21 mm e1e0p                                        (1) 

   






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n

0k

k
2

m
21 knp

k!

m

1n

emm
1np

2

, 0,1,2,...n                       (2) 

where m1 and m2 are: 

 2 2
1m x s x                                       (3) 

 2
2m s x x                                       (4) 

Relations L = f(I) for the models just mentioned and deduced from the expressions of , 2 and 3, are shown in 
Table 3. 

 

Table 3. Relations L = f(I) for the probability models 

Distribution Relation L = f(I) 

Poisson L = I = 1 

binomial L = 2I – 1  0,1I  

negative binomial L = 2I – 1   1,I  

Neyman tipe A L = I + 1 – 1/I   1,I  

 

The negative binomial and Neyman type A biparametric distributions belong to the larger family of probabilistic 
models known as “aggregate or contagious distributions”. They are of great importance in Biometrics when the 
elements of the surveyed populations are generally found in groups or clusters. As for traffic, the equivalent 
situation can be platoons. Therefore, in such a circumstance (running in platoons) traffic countings should be 
consistent with the negative biomial or Neyman type A biparametric distributions. This side of the problem will 
be dealt with in the following analysis of the empirical results. 

The next section firstly shows a statistical procedure for the identification of steady-state periods; in fact, model 
identification, calibration and validation of counting laws have to be made on these stationarity periods. These 
periods need to be defined so as to proceed with the search for links between the statistical parameters 
identifying models and flow rates, or more in general, relations between flow rates and traffic processes 
parameters. 

3. Flow Stationarity Tests 

T is defined as the observation period of the traffic flow in a section of a lane. If T is divided into n smaller 
intervals ti, i = 1, 2, …, n of equal length t and the mean of the process, represented by the sequence {Xi} of the 
random variables defined as “number of vehicles crossing the road section during the interval ti”, is constant, 
the flow is defined as stationary during the period T. In order to check that the realization {xi} = x1, x2, …, xn of 
the sequence {Xi} is extracted by a process of traffic countings with a constant mean, a “distribution free” test is 
used in this paper in that, unlike other types (for instance, the sequential probability ratio test by Wald (1947)), it 
has the advantage of not requiring any statistical hypothesis on the arrival law. Through this test the constancy of 
the process mean is controlled by verifying the independence hypothesis of the sequence {Xi} compared to the 
independence of the first “n” natural numbers (Kendall & Stuart, 1967). 

The parameter used in this test is the correlation coefficient r between the two sequences: 
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where x  and s2 are the mean and the variance of {Xi} elements. The distribution of equation (5) is obtained by 
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considering that the n values of r calculated in n permutations of {Xi} elements are equiprobable. The extreme 
values of “r” are evidently –1 and +1, where r = +1 if the sequence of traffic countings increases linearly with the 
natural numbers, r = –1 if the {Xi} decrease when the natural numbers increase. Choosing suitably large n, 
typically n > 8, it is possible to limit the length of the acceptance zone of the test and to replace (5) with the 
parameter obtained from (5) that follows: 

  2
1

2

2
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r2n
t














                                     (6) 

distributed according to a Student’s t with (n – 2) degrees of freedom. 

Through these parameters, the hypothesis of flow stationarity at level   is refused when 

2
αtt                                            (7) 

One has to choose n so that the length t is greater than a minimum value; in this way it is possible to consider 
the elements {Xi} as independent elements and to apply to them a “distribution free” test, such as the one just 
mentioned. 

Finally, the same length t of the observation interval must be kept sufficiently small to avoid non-linear flow 
variations during the interval. Such fluctuations cannot be pointed out by the test adopted which is rather very 
useful only for the linear trend hypothesis. Consequently, the present study focuses the quantities t = 20 sec and 
n = 30; so the observation period is equal to T = 10 min. With the foregoing assumptions, for definition the flow 
is considered stationary for intervals of less than 10 min. 

In order to verify that the length t = 20 sec is appropriate to consider the observed traffic countings as 
independent elements, a lag 1 serial correlation test is carried out. This verification is usually used by applying, 
for the elements of {Xi}, the autocorrelation coefficient given by: 
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                      (8) 

where , 2 and 3 are the mean, variance and third central moment of the time headway distribution (Cox & 
Lewis, 1966). Using Equation (8) it is possible to calculate  and to evaluate if it is small enough to accept the 
hypothesis of absence of statistical relationships between the elements of the traffic counting sequence. 

Indeed, in this research work no information about time headways is available; therefore, the lag 1 serial 
correlation test just above recalled is used through the quantity 

n
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Equation (9) for sufficiently large n (n > 15) is normally distributed with mean and variance given by: 
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where: 
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
n
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k
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The knowledge of the theoretical distribution of r allows performing a common two-sided test at the chosen 
significance level . Through this test, the hypothesis of independence is rejected if: 

2αrr                                        (13) 

Returning now to the correlation ratio test for the verification of the flow stationarity, it has been applied in two 
ways to the data surveyed and with the values of n, t and T previously specified. 

The former way made the assumption of a test dimension equal to   = 0.05 and treated the countings of the 
first thirty ti starting from the observation instant. If the stationarity occurred, three additional consecutive 
subintervals were added and the first three subintervals were excluded; such a test was then repeated on the new 
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sequence. The iteration stopped when the non stationarity of {Xi} was obtained. The test was then performed on 
arrivals per 10-minute interval, where the first minute corresponded to the last minute of the previous interval. 
The range of acceptance of this test, applied to the empirical data, was not small, even if the sample size n was 
not very large. The procedure for data sets creation was therefore modified in order to obtain realizations of 
gradually size increasing {Xi} as well as increasingly narrow acceptance intervals: starting from the first instant, 
the countings relating to the following ti were added one by one and the test was carried out, step by step, on 
larger and larger samples; the process is stopped when the non-stationary flow occurred. The procedure was 
iterated starting from the traffic counting value which corresponded to the last minute of the previous sequence 
and identifying further periods at a constant flow, and so forth up to the complete analysis of the available data. 
The test presented a considerable inertia and revealed the presence of a trend only in very few cases. 

For those reasons, the stationarity intervals identified through the first technique were then employed in the 
following analyses. 

The methodology used here has been described by Esposito and Mauro (1994) who applied the technique for the 
identification of stationarity periods to empirical measures of traffic countings. After nearly two decades the 
authors used the same technique on newly-acquired empirical data, as specified below; the results from 
newly-collected data and their comparison with those obtained by Esposito and Mauro (1994) are presented in 
the following paragraph. 

4. Empirical Data Analysis 

The methods described in paragraphs 2 and 3 were used in traffic countings data carried out in the spring of 2012; 
these data refer to two sections of two-lane rural highways (one lane for each direction). In particular, the data of 
1800 intervals with a width t = 20 sec, equal to a total of 10 hours and 3053 vehicular passages, were analysed. 
During these periods, the observed road section was filmed by a video camera and the countings were later 
carried out by means of the recordings. 

Empirical data have been surveyed on two road sections of the following roads in the province of Trento, Italy: 

1) Provincial Road No. 36 “delle Grazie”, in the municipality of Arco; 

2) National Road No. 421 “dei Laghi di Molveno e Tenno”, in the municipality of Tenno. 

The first section is set on a long, flat and straight road where overtaking is disallowed. The roadway is about 
7.00 m wide, with lane width of 3.25 m and paved shoulders of 0.25 m. Table 4 shows some information gained 
from the countings on section 1. 

 
Table 4. Information about the countings on the Provincial Road No. 36 “delle Grazie” 

Set Date Time Direction

A April 26th, 2012 10:00-12:00 North 

B April 26th, 2012 13:00-14:00 South 

C April 27th, 2012 16:00-17:00 North 

D April 27th, 2012 17:00-18:00 South 

 

Instead, section 2 is set on a short, straight road, with a 6% grade, where overtaking is disallowed. The 
carriageway is about 6.50 m wide and the paved shoulders are about 0.50 m. Table 5 summarizes some 
information on the survey. 

 
Table 5. Information about the countings on the National Road No. 421 “dei Laghi di Molveno e Tenno” 

Set Date Time Direction

E May 10th, 2012 15:00-18:00 South 

F May 10th, 2012 17:00-19:00 North 

 

By applying the methodology above described to all the collected data, the observed intervals were divided into 
23 stationarity periods, summarized in Table 6 and in Table 7, respectively for the former and the latter road 
section. 
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Table 6. Data on Provincial Road No. 36 “delle Grazie” 

Direction 
and date 

Hour and 
stationarity period 

length 

S 
e 
t 

Traffic counting data 
I and L 
estimate 

Parameters 

x  
(veh/20 sec) 

s2 
Flow 
rate 

(veh/h)
I L 

negative binomial binomial Neyman A 

p k p n m1 m2 

North 
04/26/’12 

10.00-10.33 
33 min 

A1 2.389 5.830 430 2.44 3.67 0.410 1.658 - - - - 

10.34-10.52 
18 min 

A2 2.567 8.637 462 3.37 6.24 0.297 1.085 - - - - 

10.53-11.22 
29 min 

A3 1.694 2.434 305 1.44 1.47 - - - - 3.882 0.436

11.23-11.49 
26 min 

A4 1.583 4.051 285 2.56 4.48 0.391 1.016 - - - - 

South 
04/26/’12 

13.00-13.21 
21 min 

B1 2.694 6.829 485 2.53 4.10 0.395 1.756 - - - - 

13.22-13.34 
12 min 

B2 2.617 3.614 471 1.38 1.44 - - - - 6.865 0.381

13.35-13.57 
22 min 

B3 2.878 7.899 518 2.74 4.35 0.364 1.649 - - - - 

North 
04/27/’12 

16.00-16.41 
41 min 

C1 1.783 3.700 321 2.07 3.00 0.482 1.659 - - - - 

16.42-17.00 
18 min 

C2 2.111 3.600 380 1.71 1.78 - - - - 2.993 0.705

South 
04/27/’12 

17.00-17.37 
37 min 

D1 2.739 10.430 493 3.81 5.98 0.263 0.975 - - - - 

17.38-18.00 
22 min 

D2 3.178 14.518 572 4.57 7.84 0.219 0.890 - - - - 

 

Table 7. Data on National Road No. 421 “dei Laghi di Molveno e Tenno” 

Direction 
and date 

Hour and 
stationarity 

period length 

S 
e 
t 

Traffic counting data 
I and L 
estimate 

Parameters 

x  
(veh/20 sec) 

s2 
Flow 
rate 

(veh/h)
I L 

negative 
binomial 

binomial Neyman A 

p k p n m1 m2 

South 
05/10/’12 

15.00-15.26 
26 min 

E1 0.961 0.876 173 0.91 0.89 - - 0.089 11 - - 

15.27-16.03 
36 min 

E2 1.117 1.702 201 1.52 2.24 0.656 2.130 - - - - 

16.04-16.29 
25 min 

E3 0.939 0.721 169 0.77 0.81 - - 0.232 4 - - 

16.30-16.58 
28 min 

E4 1.083 0.762 195 0.70 0.54 - - 0.297 4 - - 

16.59-17.21 
22 min 

E5 1.211 1.875 218 1.55 1.71 - - - - 2.209 0.548

17.22-17.48 
26 min 

E6 1.272 2.214 229 1.74 1.92 - - - - 1.719 0.740

North 
05/11/’12 

17.00-17.18 
18 min 

F1 1.133 1.540 204 1.36 2.03 0.736 3.158 - - - - 

17.19-17.29 
10 min 

F2 1.250 2.238 225 1.79 2.08 - - - - 1.581 0.790

17.30-17.44 
13 min 

F3 1.494 2.980 269 1.99 3.00 0.501 1.503 - - - - 

17.45-18.12 
27 min 

F4 1.217 2.052 219 1.69 2.82 0.593 1.772 - - - - 

18.13-18.31 
18 min 

F5 1.550 3.110 279 2.01 3.18 0.498 1.540 - - - - 

18.32-19.00 
28 min 

F6 1.606 3.870 289 2.41 3.72 0.415 1.138 - - - - 
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For each stationarity period such tables contain the mean (for vehicles per 20 sec and vehicles per hour), the 
variance and the parameters I and L. By adopting the criteria laid down in paragraph 2, the theoretical 
distributions that best approximate the observed data for each period with a constant flow rate were analysed; the 
values of the parameters obtained by the calculations are also indicated in the tables. 

No empirical series is well approximated by a Poisson distribution; the observed data, instead, seem to be 
approximated by the negative binomial (in most cases), binomial or Neyman type A distributions. The graphical 
representation on the plane (I,O,L) of the sample points  L,I  has helped to identify the most suitable 
theoretical model; in that regard see Figure 2 and Figure 3. These models were calibrated through the criteria 
indicated in paragraph 2 and their parameters are shown in Table 6 and Table 7. 

The validation of the chosen models to the theoretical predictions was then verified by performing a 2 test and 
by calculating the relative squared index, which confirmed the above choices. More specifically, the relative 
squared index Irs is defined as follows: 

 i i

rs
i

ˆy y

nI ;
ŷ

n








 ni1                              (14) 

where yi is the observed value i; iŷ  is the value i of the theoretical distribution. 

 
Figure 2. Plane (I,O,L) for countings on Provincial Road No. 36 “delle Grazie” 

 

 
Figure 3. Plane (I,O,L) for countings on National Road No. 421 “dei Laghi di Molveno e Tenno” 

Binomia 

Binomia 

Negative Binomial 

Negative Binomial 

Neyman A 

Neyman A 
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By way of example, Figure 4, Figure 5 and Figure 6 show the frequency distributions of three sets of empirical 
traffic countings, together with the corresponding theoretical distributions that best approximate the data; the 
figures also show the value of the probability p obtained by applying a 2 test to assess the conformity between 
the sample statistic and the law chosen as its theoretical representation (note that values p tending to 1 support 
the hypothesis verification) and the relative squared index Irs. An example for each analysed model (negative 
binomial, binomial and Neyman type A) is shown. 

As for the binomial and negative binomial frequency distributions, in order to avoid approximations, the 
binomial coefficient was calculated by generalizing the factorial operator and using the Gamma function (x) 
through the following definition of general validity: 

 
   1yxΓ1yΓ

1xΓ

y

x











                              (15) 

 

Figure 4. Frequency distributions for set A1 

 

 
Figure 5. Frequency distributions for set E1 
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Figure 6. Frequency distributions for set A3 

 
Finally, links between the parameters p and k, which define the negative binomial model, and the flow rate Q 
have been investigated by means of the least-squares method; the following equations were obtained (see also 
Figure 7 and Figure 8): 

0.0024Qp 0.9784e ,Q 50vph;r 0.885                           (16) 

0.543k 34.93Q ;r 0.557                              (17) 

 
Figure 7. Regression curve between the negative binomial parameter p and the flow rate 
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Figure 8. Regression curve between the negative binomial parameter k and the flow rate 

 

As mentioned above, a similar analysis had been carried out by Esposito and Mauro (1994); in that paper traffic 
countings were carried out in 2892 intervals with a width t = 20 sec, for a total of 4745 vehicular passages. 
These data were collected on three two-lane rural highways between 1989 and 1992; each road had different 
geometric alignment features, as well as different overtaking rules. 

Esposito and Mauro (1994) identified 33 steady-state periods; their data (minimum and maximum values) are 
summarised in Table 8. 

 

Table 8. Summary of data collected by Esposito and Mauro (1994) 

Number of 

stationarity 

period 

Length of 

stationarity period 

(minutes) 

Flow rate (veh/h)

I and L estimate Parameters 

I L 

negative binomial binomial 

28 periods 5 periods 

p k p n 

33 
min. 11 min. 113 min. 0.53 min. 0.35 min. 0.204 min. 0.807 min. 0.032 min. 3

max. 60 max. 630 max. 4.91 max. 8.49 max. 0.828 max. 4.808 max. 0.475 max. 20

 

The regression curve equations, obtained by Esposito and Mauro (1994), are as follows: 
0.0028Qp 1.154e ,Q 50vph;r 0.876                             (18) 

0.857k 227Q ;r 0.626                                 (19) 
These curves are shown in Figure 9 and Figure 10, together with the regression curves of the parameters p and k 
obtained by jointly examining data in the paper by Esposito and Mauro (1994) and data coming from the above 
said surveys carried out in the spring of 2012; the following equations were obtained: 

0.0027Qp 1.1022e ,Q 50vph;r 0.876                           (20) 

0.773k 137.34Q ;r 0.610                               (21) 
By comparing the relations at different times, the curves appear to be substantially corresponding to flow rate 
values which are located approximately in the central part of the examined range (300 < Q < 500); instead, the 
curves move away in correspondence with the extreme values, but not in a pronounced way. The curves obtained 
from the complete data analysis (data collected during the years 1989-1992 and 2012) are very close to those 
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found in the paper by Esposito and Mauro (1994) (data collected during the years 1989-1992); this can be easily 
explained by considering that the sample points  L,I  obtained by traffic countings made in 2012 are the half 
than those resulting from traffic countings carried out by Esposito and Mauro (1994). 

Although carried out at a distance of about two decades, the results obtained from the two traffic counting 
surveys are essentially consistent with one another; they can be used in simulations which do not allow 
performing a complete empirical analysis and in parameter estimation for arrival statistical distributions, on 
condition that there is compliance with the negative binomial theoretical distribution. 

 
Figure 9. Regression curve between the negative binomial parameter p and the flow rate 

 

 
Figure 10. Regression curve between the negative binomial parameter k and the flow rate 
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5. Conclusions 

The paper deals with the identification, calibration and validation of statistical models for countings of two-lane 
rural highways, especially with the definition and determination of the statistical stationarity periods of the flow 
rate, on the basis of the observed data analysis. 

After a brief review of probabilistic arrival models usually used in the study of traffic phenomena, a complete 
statistical analysis methodology has been developed to define stationarity periods, to verify the independence of 
the events (the sequence of arrivals) as well as to identify the probability laws for traffic countings. The 
procedure was applied to some samples of traffic counting, empirically surveyed on two two-lane rural highways; 
then, links were established between flow rate and parameters of the negative binomial distribution (found to 
comply with most of the data). However, the same analysis was not performed in the binomial, Poisson and 
Neyman type A distributions because of the very limited availability of data. Finally, a comparison was made 
between the results from the 2012 data collection and those reported in the previous paper by Esposito and 
Mauro (1994); the latter applied the same procedure to other data sets. 

The analysis of the data collected specifically for this study confirms what already mentioned by Esposito and 
Mauro (1994); indeed, it shows that the arrivals analysed in the two roads are mostly well modeled by the 
negative binomial counting distribution (which is an “aggregate” or “contagious” distribution), and other data 
(though insufficient for in-depth analysis) is well modeled by the Neyman type A distribution, which is defined 
as an “aggregate” or “contagious” distribution as well. These results are consistent with the fact that the flow 
mainly recorded on the two examined infrastructures is a commonly called “platoon” flow. So, in general and 
even for low flow values, the Poisson law seems to be unsuitable for representing the arrivals on two-lane rural 
highways; instead, other models are recommended in these cases. Such models have to take into account the 
vehicle group formation influenced by a leader. 

Finally, as regards the relationships between the parameters of the negative binomial model and the flow rate, the 
comparison between the relations from this study and those by Esposito and Mauro (1994) has shown that the 
curves are substantially corresponding each other for flow rate values which are located approximately in the 
central part of the examined range (300 < Q < 500); instead, the curves move away in correspondence with the 
extreme values, but not in a pronounced way. 

The results obtained from the two traffic measurement surveys, although carried out at a distance of about two 
decades, are essentially in good agreement, and they may be useful comparison tools for parameter estimates of 
arrival distributions, on condition that there is compliance with the negative binomial distribution. Such results 
can be useful in simulations when a complete empirical analysis cannot be performed. However, the limited size 
of the sample data analysed does not allow to extend the relationships found to other two-lane rural highways 
without taking proper precautions or performing adequate sensitivity analyses. 
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