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Abstract 
Studies on boundary layer flow of the Falkner-Skan stretching and shrinking wedge flow of a power-law fluid 
and heat transfer have received much attention because of their extensive applications in engineering. In this 
paper, the heat transfer analysis of Falkner-Skan stretching and shrinking wedge flow of a power-law fluid with 
thermal slip and variable consistency is studied. Scaling group of transformation is used to map the governing 
nonlinear system of partial differential equations (i.e. the boundary layer equations) into a system of nonlinear 
ordinary differential equations. The resulting equations contain thermophysical parameters, namely: variable 
consistency parameter M, suction/injection parameter wf , wedge velocity parameter  , thermal slip parameter 

b , Falkner-Skan flow parameter m and power-law index n. The transformed equations are solved numerically to 
study the behavior of the dimensionless velocity, the temperature, the wall shear stress as well as the rate of heat 
transfer for different values of the parameters. The results are compared with those known from the literature and 
good agreement between the results is obtained.  

Keywords: non-Newtonian fluid, variable consistency, stretching/shrinking wedge, thermal slip, group-theoretic 
method 

1. Introduction  

Non-Newtonian fluids such as butter, jams, jellies, soup, blood, saliva etc have many biological and industrial 
applications (Postelnicu & Pop, 2011). The fundamental theory and areas of applications of non-Newtonian 
fluids may be found in several texts, for example texts by Bird et al. (1987) and Crochet et al. (1984). Due to the 
many applications of non-Newtonian fluids, many researchers have investigated the flow field and heat transfer 
over various geometries for various boundary conditions. Abel et al. (2009) has found that power-law index n 
decreases momentum boundary layer. The effects of variable wall heat and mass fluxes on the free convective 
flow along a vertical plate which is in a porous medium filled with a non-Newtonian fluid was studied by Cheng 
(2011). Li et al. (2011) studied heat transfer in a pseudo-plastic non-Newtonian fluid which is aligned with a 
semi-infinite plate, and it was found that there is an increase in the thermal diffusion ratio with the increases the 
power-law index. Afify (2009) highlighted that the suction and injection parameter has a significant effect on the 
flow and on the rate of heat transfer. Abel et al. (2010) investigated the boundary layer flow as well as heat 
transfer characteristics for a second grade, non-Newtonian fluid in a porous medium. They have found that 
suction had the effect of decreasing the magnitude of heat transfer.  

In 1931, Falkner and Skan studied the similarity solutions of boundary layer flow over a static wedge which is 
immersed in a viscous fluid. In the last few years, many researchers have investigated Falkner-Skan flow 
considering different effects. Liu and Chang (2008), for example, presented a simple but accurate method to 
estimate the unknown initial boundary conditions by utilizing the Lie-group shooting method on the Blasius and 
Falkner-Skan equations. Alizadeh et al. (2009) studied the same problem by the Adomian decomposition method, 
which is a semi analytical method. Afzal (2010) discussed suction/injection effects on the tangential movement 
of a nonlinear power-law stretching surface. Parand et al. (2011) applied Hermite functions pseudospectral 
method to find an approximate solution for the Falkner-Skan equation. The Falkner-Skan wedge flow for a 
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non-Newtonian fluid with a variable free stream condition was studied numerically by Postelnicu and Pop (2011). 
Jalil et al. (2012) studied analytical solutions of Falkner-Skan wedge flow for a non-Newtonian power-law fluid 
using perturbation. They concluded that the skin friction coefficient is decreased with the increase of power-law 
exponent (n) in this analytical (perturbation) study of Falkner-Skan wedge flow for a non-Newtonian power-law 
fluid. 

Many investigators investigated the effect of variable consistency (variable viscosity for Newtonian fluid) on the 
flow over different geometries. Tsai et al. (2009) explored the effects of variables viscosity and thermal 
conductivity on the heat transfer characteristics for flow which is hydromagnetic. They found that the fluid 
temperature increases whilst the fluid velocity and heat transfer rate decrease with the increase in viscosity 
parameter. Rahman and Salahuddin (2010) studied the effect of temperature dependent viscosity on MHD flow 
over a radiating inclined surface. They concluded that velocity and temperature for the case constant viscosity 
are higher than for corresponding case of variable viscosity. Hassanien and Rashed (2011) investigated the 
effects of variable viscosity and thermal conductivity on coupled heat and mass transfer in porous media. They 
found that variable viscosity have significant influence on the velocity, temperature as well as the rate of heat 
transfer at the wall. Mukhopadhyay (2011) presented an analysis of heat transfer over a stretching surface with 
thermal slip condition and the conclusion drawn was that the heat transfer reduces with an increase in thermal 
slip parameter.  

A number of authors have applied group-theoretic methods to find the similarity solutions of several transport 
problems. For example, Hamad et al. (2011) applied a one-parameter group to free convective flow to study the 
magnetic field effects of a nanofluid over a semi-infinite vertical flat plate. Mutlag et al. (2012) used this method 
to study the effect of thermal radiation of a non-Newtonian power-law fluid on the velocity temperature profile. 
Uddin et al. (2012) have used scaling group transformation to study the problem of viscous in compressible 
MHD laminar boundary layer slip flow for a nanofluid over a convectively heated permeable moving linearly 
stretching sheet. 

In our present paper, the Falkner-Skan stretching and shrinking wedge flow of a non-Newtonian power-law fluid 
is considered. The effect of thermal slip and variable consistency are included. The similarity representation of 
the problem is presented and investigated via scaling group of transformations and the transformed equations are 
then solved numerically to show the effects of the governing parameters, namely, the Falkner–Skan power-law 
index, consistency, suction/injection, and wedge velocity parameters on the dimensionless velocity, the 
temperature as well as on the wall shear stress and the rate of heat transfer. 

2. Mathematical Formulation of the Problem 
We consider steady 2-D laminar incompressible boundary layer flows due to non-Newtonian fluid over a porous 
stretching and shrinking wedge. It is assumed that free stream velocity is of the form    m

e ou x U x L . It is 
further assumed (as also done by others) that wedge velocity is of the form    w o

m
u x U x L  . The physical 

configuration is shown in Figure 1.  

 
Figure 1. Physical model and Coordinates system 

 

The relevant boundary layer equations can be written as (Postelnicu & Pop, 2011) 
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where pk c   is the thermal diffusivity,   is the fluid density, pc is the specific heat, k is the thermal 

conductivity of the fluid, x, y are the coordinates along and normal to the surface of the wedge. u  and v are the 
boundary layer velocity components along the x  and y -axes respectively, and n is the index in the power-law 
variation of of a non-Newtonian fluid. It was pointed out by Postelnicu and Pop (2011) that Equation (2) governs 
the flow of a shear-thinning or pseudoplastic fluid for the case 1n   and a shear-thickening or dilatants fluid 
for the case 1n  . T is the temperature inside the boundary layer, K is consistency of the fluid. 

We assumed the Reynold’s model for the variation of consistency with temperature be (Szeri, 1998; Massoudi & 
Phuoc, 2004) 

   expK K M                                 (4) 

Here K  is the ambient fluid dynamic consistency, M is a consistency variation parameter. The following 
appropriate boundary conditions on the velocity and the temperature are employed: 
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where   is a constant, with 0  and 0  corresponding to a moving wedge in a direction similar to and 
opposite from the free stream, respectively, whereas 0 is the case of a static wedge (see Yacob et al., 2011). 

0wv  is the suction velocity while 0wv   is the injection velocity, 1D is thermal slip factor with dimension 
length. 

3. Method of Solution 
The following dimensionless variables are now utilized  
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where 2Re n nU L
   is the generalized Reynolds number based the characteristic length L. We have 
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The boundary conditions become 
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The stream function  ,x y  defined by ,u y v x        satisfy the continuity Equation (1) 
automatically. In order to find similarity transformations, we consider following simplified form of the 
one-parameter group (Uddin et al., 2012; Mutlag et al., 2012; Na, 1979)  
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where 1 2 3 7, , ,...,c c c c are constant and   is the parameter of the group. Substituting Equation (10) into the 
Equations (7)-(9), we will then obtain the following relationship among 'c s   
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Note that , i.e.,    is invariants. The characteristic equations are as follows:  
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Solving the above equations, the following similarity transformations are obtained  
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where      1 , ,w pD v c
  

are constant thermal slip, velocity of suction/injection and the specific heat. 

Using Equation (18) in Equations (7)-(9), we obtain following nonlinear system of ordinary differential 
equations 
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   are the dimensionless thermal slip parameter  and 

the suction/injection parameter respectively. Note that all parameters are free from x which confirms the true 
similarity solution of the Equations (14)-(15) subject to the boundary conditions given in Equation (16). Here 
primes denote differentiation with respect to . 

It is to be noted that for 0, 1M n  our problem reduces to Jiji (2009) in this case the Equations (14)-(15) are  
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Note that when 0, 1m M n    then Equation (14) conforms to Equation (11) in Ishak and Bachok (2009) 
and the system of ordinary differential Equations (14)-(15) is the same as that obtained by Aziz (2009) when

0, 1m M n   . 

4. Physical Parameters 
Quantities of thermal and other engineering design are skin friction factor fxC  and the Nusselt number xNu , 
which take the form: 
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Using (6) and (13) we have from (19) 
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where 2Re n n
x eu x   is the local Reynolds number. 

5. Results and Discussions 
The governing partial differential equations have been successfully transformed into ordinary differential 
equations. The transformations (Equations 14-16) resulted in a two point boundary value problem which is 
highly nonlinear and their closed form analytical solution may not exist and hence we will solve them 
numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method (in conjunction with shooting 
method). In the present study, the numerical solutions for the effect of thermal slip on the heat transfer 
Falkner-Skan stretching wedge flow of a power-law fluid with variable consistency are presented. To compare 
the present results with those of Aziz (2009), Bognar and Hriczo (2011), the values of (0)  for 

0, 1wf M m n     , and Pr 0.7,10m   and those of Jiji (2009) for the values of (0)f   for 
0, 1wf M n    , are considered as shown in Tables 1, 2, 3. In Table 1, we compare the present results with 

those of Ishak et al. (2007), Postelnicu and Pop (2011). Table 2 shows that our results are in agreement with 
those obtained by Aziz (2009), Bognar and Hriczo (2011), Table 3 show that the present results are in agreement 
with those of Jiji (2009). We cannot compare with regard to (0)  because the boundary conditions in our 
study differ from those in Jiji (2009). 

 

Table 1. The values of  0f   when 0, 1wf M m n      

Ishak et al. (2007) Postelnicu and Pop (2011) Present study

1.2326 1.23259 1.232587 

 
Table 2. The values of  0  for values of b and Prm when 0, 1wf M m n      

b 

Pr = 0.72 Pr = 10 

Aziz 

(2009) 

Bognar 

and 

Hriczo 

(2011) 

Present 

study 

Aziz 

(2009) 

Bognar 

and 

Hriczo 

(2011) 

Present 

study 

20 0.1447 0.144661 0.144661 0.0643 0.064256 0.064255

10 0.2528 0.252758 0.252758 0.1208 0.120752 0.120752

5 0.4035 0.403523 0.403522 0.2155 0.215484 0.215484

2.5 0.575 0.575014 0.575013 0.3546 0.354566 0.354565

1.66 0.6699 0.669916 0.670801 0.4518 0.451759 0.452752

1.25 0.7302 0.73017 0.730169 0.5235 0.523512 0.523511

1 0.7718 0.771822 0.771822 0.5787 0.578656 0.578656

0.2 0.9441 0.944173 0.944173 0.8729 0.872883 0.872883

0.1 0.9713 0.971285 0.971285 0.9321 0.932128 0.932127

0.05 0.9854 0.985434 0.985433 0.9649 0.964872 0.964871

 

Table 3. The values of  0f   for values of m  when 0, 1wf M n     

m Jiji (2009) Present study

0.0 0.3206 0.33205 

0.111 0.5120 0.51169 

0.333 0.7575 0.75713 

1.0 1.2326 1.23258 
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