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Abstract 
We prove the existences of positive solution for neutral difference equation with multiply delay. 
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1. Introduction  
In recent years, Difference equations have beed applied in many areas,such as population dynamics, stability theory, 
circuit theory, bifurcation analysis, dynamical behavior of delayed network systems and so on. The oscillation or 
asymptotic behaviour of difference equations was the subject of invesigation by many authors. 
In this paper, we are concerned with the following neutral difference equation with positive and negative coefficients. 
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We will investigate the existences of positive solution of this equation. 
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0, , ([ , ], )l i jR P Q n R+∈ ∞ ; , ,l i jr τ σ are non-negative and non-de-creasing about  
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Throughout the paper,we suppose the following assumptions   
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When 1w m k= = = ,the equations changed to  
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Where { } { } { }( ) , ( ) , ( )P n Q n R n are sequence of nonnegative real numbers, , , rτ σ are integers  
with 0 1, 0rσ τ≤ ≤ − > .The oscillatory and non-oscillatory solutions of Eq(4) have been investigateed by several authors. 
The aim of the present is to investigate the behavior of eventually positive solutions of Eq(1)On the bases of the 
references of [2]. 
2. Some lemmas 
Lemma1 Assume that (1)(2) holds 0n n≥ and
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then we eventually have ( ) 0,y n∆ ≤ ( ) 0y n > . 
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Lemma 2  Assume (1) { }np are sequences of nonnegative real numbers; (2) k and l are integers; (3) { }nq are 
sequences of nonnegative real numbers and 0n np lq+ > ( )n N≥ , 0;l > or 0, 0sl q> ≥ [ . 1]s n n∈ +  
Setting { }max ,b k l= assume the inequality   
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3. Main results and proof 
Theorem 1 Assume 
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has an eventually positive solution. 
Proof: We can see the sufficient condition of the theorem is obvious.we only proof the Necessary condition. 
Assume{ }( )x n is an eventually positive solution of the inequality (5). 
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then in view of lemma 1, we have  ( ) 0y n∆ ≤ , ( ) 0y n > .and lim ( ) 0
n

y n
→∞

≥ . 

setting lim ( )
n

y y n∞ →∞
=  in view of (6), we have   

1 1
( ) ( ( ) ( ) ( ) ( ) ( ))

i inw m

l l i i
l i u n

y n x n R n x n r P u x u
τ σ

τ
+ −

= = =

∆ = ∆ − − + −∑ ∑ ∑  

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

k m m m

j j i i i i i i i i
j i i i

Q n x n P n x n P n x n P n x nσ τ τ σ σ τ
= = = =

≤ − − − − + − − + −∑ ∑ ∑ ∑     

1 1

( ) ( ) ( ) ( )
k m

j j i i i i
j i

Q n x n P n x nσ τ σ σ
= =

≤ − − + − −∑ ∑
1

( ) ( ) 0
m

i i
i

H n x n σ
=

= − − ≤∑                               (7) 

Summing both side of the inequality (7) form n to ∞ and takeing limt on both side of the resulting inequality, we have   

1
( ) ( ) ( )

m

i i
s n i

y y n H s x s σ
∞

∞
= =

− ≤ − −∑∑  

Then we can see that   
1 1

( ) ( ) ( ) ( ) ( )
m m

i i i i
s n i s n i

y n H s x s y H s x sσ σ
∞ ∞

∞
= = = =

≥ − + ≥ −∑∑ ∑∑  

i.e      
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
i inw m m

l l i i i i
l i u n s n i

x n R n x n r P u x u H s x s
τ σ

τ σ
+ − ∞

= = = = =

− − ≥ − + −∑ ∑ ∑ ∑∑  

Then the corresponding difference equation  
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has an eventually positive solution ( )z n .obvious{ }( )z n are positive solutions of (*). 
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the the equation(*) aslo has an eventually positive solution. 
Proof: Assume ( )y n  is an eventually positive solution of (8). then we have  
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We have 2
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we eventually have 2( ) 0, ( ) 0, ( ) 0y n y n y n> ∆ > ∆ ≤ .so { }( )y n are sequences of  nondecreasing, { }( )y n∆ are 
sequence of nonincreasing 
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then we have 
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By induction,  we can show that 
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Substituting this into (9) we obtain 
1

( ) ( ) ( ) 0
m

i i
i

a n H n x n σ
=

∆ + − ≤∑  
1n n L≥ +  

So, it follows form (10) that  

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

w m m

l l i i i i i i
l i i

x n R n x n r P n x n P n x nτ σ σ τ
= = =

⎡ ⎤
∆ − − − + − − + −⎢ ⎥⎣ ⎦

∑ ∑ ∑  

1 1
( ) ( ) ( ) ( ) 0

m m

i i i i i i
i i

P n x n Q n x nτ σ σ σ
= =

+ + − − − − ≤∑ ∑  

i.e      
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
w m k

l l i i j j
l i j

x n R n x n r P n x n Q n x nτ σ
= = =

⎡ ⎤∆ − − + − − − ≤⎢ ⎥⎣ ⎦
∑ ∑ ∑  

By theorem 1,  Eq(*) has an eventually positive solution.   
Lemma 3 Let{ }( )d n be a sequence of nonnegative real numbers,Assume that, for some integer *n and sufficiently large 
n the inequality  
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holds,Then,the following difference equation 
2 ( ) ( ) 0ny n d y n∆ + =  

has an eventually positive solution. 
Now we are ready to give out result : 
Theorem 3 Assume 
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is satisfied, Then, Eq(*) has an eventually positive positive.   
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