

Vol. 2, No. 3 May 2008

P-completely Regular Semigroup

Xiujuan Pan Department of Mathematics, Tianjin Polytechnic University Tianjin 300160, China E-mail: pxj10628@126.com

Abstract

In order to prove a completely regular semigroup with the strong semilattice structure is P-completely regular semigroup. Using the strong semilatice structure and the property of congruence. The sufficient condition of which a completely regular semigroup is P-completely regular semigroup is have the strong semilattice structure, and The subclass NBG of the completely regular semigroup is P-completely regular semigroup.

Keywords: Completely regular semigroup, The strong semilattice, Homomorphisms

1. Preliminaries

Definition 1.1. A semigroup S is a semilattice Y of semigroup S_{α} ($\alpha \in Y$) if there exists an epimorphism φ of S onto the semilattice Y with $\alpha \varphi^{-1} = S_{\alpha}$ ($\alpha \in Y$). We write $S = [Y; S_{\alpha}]$.

Definition 1.2. Let $S = [Y; S_{\alpha}]$ be a semilattice of semigroups. If for every $\alpha \in Y$ every congruence on S_{α} can be extended to a congruence on S, then S is said to be a P-semigroup.

Definition 1.3. A semigroup S is called completely regular, if for every $a \in S$, there exists an element $x \in S$ such that a = axa and ax = xa.

In [1], we have known that completely regular semigroup $S = [Y; S_{\alpha}]$ is a semilattice of completely simple semigroups S_{α} . In fact, every S_{α} is a *D*-class of *S*. If every congruence on *D*-class of *S* can be extended to a congruence on *S*, then *S* is said to be a *P*-completely regular semigroup.

Definition 1.4. Let $S = [Y; S_{\alpha}]$ be a semilattice of semigroup. For each pair $\alpha, \beta \in Y$ such that $\alpha \ge \beta$, let $\varphi_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$ be a homomorphism such that

- (i) $\varphi_{\alpha,a} = \mathbf{1}_{S_{\alpha}}$,
- (ii) $\varphi_{\varepsilon,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$ if $\alpha \ge \beta \ge \gamma$

on $S = \bigcup_{\alpha \in Y} S_{\alpha}$ define a multiplication by

 $ab = (a\varphi_{\alpha,\alpha\beta})(b\varphi_{\beta,\alpha\beta}) \quad (a \in \alpha, b \in \beta)$

with this multiplication S is a strong semilattice Y of semigroup S_{α} to be denoted by $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$.

In this paper, we mainly give some views on a open problem "characterize all the P – completely regular semigroups ", and find the sufficient condition that a completely regular semigroup is the P-completely regular semigroup. We shall use the same notations and terminology to [1]. In this paper, we are interested in the symbols:

CR	of completely regular semigroups,
NB	of normal bands,
Con(S)	of all congruences on S,
NBG	of normal cryptogroups,
ONBG	of normal orthogroups,
Clifford	of clifford semigroups.

2. The Main Result

Let $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ be a strong semilattice of semigroups. If $\rho_{\alpha} \in Con(S_{\alpha})$, then for every $\beta \in Y$ we can define a new relation $\rho_{\alpha}^* = \bigcup_{\beta \in Y} \rho_{\alpha}^* |_{S_{\alpha}}$ as follows:

$$\rho_{\alpha}^{*}|_{S_{\beta}} = \begin{cases} \rho_{\alpha} & \beta = \alpha \\ \{(a\varphi_{\alpha,\beta}, b\varphi_{\alpha,\beta}) \in S_{\beta} \times S_{\beta} \mid (a,b) \in \rho_{\alpha}\} \cup 1_{S_{\beta}} & \beta < \alpha \\ \{(u,v) \in S_{\beta} \times S_{\beta} \mid (u\varphi_{\beta,\alpha}, v\varphi_{\beta,\alpha}) \in \rho_{\alpha}\} & \beta > \alpha \end{cases}$$

Theorem 2.1. Let $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ be a strong semilattice of semigroups, if $\rho_{\alpha} \in Con(S_{\alpha})$, then $\rho_{\alpha}^*|_{S_{\alpha}} \in Con(S_{\beta})$.

Proof. We need prove from two parts as follows:

(1) Assume $\beta > \alpha, u, v \in S_{\beta}$ and $(u, v) \in \rho_{\alpha}^* |_{S_{\alpha}}$, then by the definition

of
$$\rho_{\alpha}^*$$
 we have $(u\varphi_{\beta,\alpha}, v\varphi_{\beta,\alpha}) = \rho_{\alpha}^*|_{S_{\beta}} = \rho_{\alpha}^*$. For any $c \in S_{\beta}, c\varphi_{\phi,\alpha} \in S_{\alpha}$, since $\rho_{\alpha} \in Con(S_{\alpha})$, this imply that

$$(u\varphi_{\beta,\alpha})(c\varphi_{\beta,\alpha})\rho_{\alpha}(v\varphi_{\beta,\alpha})(c\varphi_{\beta,\alpha}) \Rightarrow (uc)\varphi_{\beta,\alpha}\rho_{\alpha}(vc)\varphi_{\beta,\alpha} \Rightarrow (uc,vc) \in \rho_{\alpha}^{*}|_{S_{\alpha}}$$

Similarly, we can show that $(cu, cv) \in \rho_{\alpha}^*|_{S_{\alpha}}$. Thus $\rho_{\alpha}^*|_{S_{\alpha}} \in Con(S_{\beta})$.

(2) Assume $\beta < \alpha, m, n, u, v \in S_{\beta}$, and $(m, n), (u, v) \in \rho_{\alpha}^* |_{S_{\beta}}$. Form the definition of ρ_{α}^* , there exist $a, b, c, d \in S_{\alpha}$, so that $b\varphi_{\alpha,\beta} = v, d\varphi_{\alpha,\beta} = n$, and $(a,b) \in \rho_{\alpha}^*$, $(c,d) \in \rho_{\alpha}^*$. Since $\rho_{\alpha} \in Con(S_{\alpha})$, we have $(ac,bd) \in \rho_{\alpha}$,

$$\Rightarrow ((ac) \varphi_{\alpha,\beta}, (bd) \varphi_{\alpha,\beta}) \in \rho_{\alpha}^{*} |_{S_{\beta}}$$
$$\Rightarrow (a\varphi_{\alpha,\beta})(c\varphi_{\alpha,\beta})\rho_{\alpha}^{*} |_{S_{\beta}} (b\varphi_{\alpha,\beta})(d\varphi_{\alpha,\beta})$$
$$\Rightarrow (um, vn) \in \rho_{\alpha}^{*} |_{S_{\alpha}}.$$

Thus $\rho_{\alpha}^*|_{S_{\alpha}} \in Con(S_{\beta})$. From (1) and (2), we conclude that $\rho_{\alpha}^*|_{S_{\alpha}} \in Con(S_{\beta})$ for any $\beta \in Y$.

We have immediately the following corollary and it's proofs are omitted.

Corollary 2.2. Let $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ be a strong semilattice of semigroups, and $a, b \in S_{\beta}$. If $(a, b) \in \rho_{\alpha}^{*}$, then $(a\varphi_{\beta,\gamma}, b\varphi_{\beta,\gamma}) \in \rho_{\alpha}$ for any $\gamma \leq \beta$.

Theorem 2.3. If $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ be a strong semilattice of semigroups, then S is a P-semigroup.

Proof. We need prove for every $a \in Y$ every congruence on S_{α} can be extended to a congruence on S, that is to say, we only need prove $\rho_{\alpha}^* \in Con(S)$. Let $(a,b) \in \rho_{\alpha}^*$. By the definition of ρ_{α}^* as (1), we know a is in the same subsemigroup of S with b. Assume that $a, b \in S_{\alpha}$, then for any $c \in S$, let $c \in S_{\alpha}$, by Definition 1.4., we have

$$ac = (a\varphi_{\beta,\beta\gamma})(c\varphi_{\beta,\beta\gamma}) \quad , \quad bc = (b\varphi_{\beta,\beta\gamma})(c\varphi_{\beta,\beta\gamma}) \, .$$

Since
$$(a,b) \in \rho_{\alpha}^*|_{S_{\alpha}}$$
, thus

$$\Rightarrow (a\varphi_{\beta,\beta\gamma}, b\varphi_{\beta,\beta\gamma}) \in \rho_{\alpha}^{*} |_{S_{\beta\gamma}} \in Con(S_{\beta\gamma})$$
$$\Rightarrow (a\varphi_{\beta,\beta\gamma})(c\varphi_{\gamma,\beta\gamma})\rho_{\alpha}^{*} |_{S_{\beta\gamma}} (b\varphi_{\beta,\beta\gamma})(c\varphi_{\gamma,\beta\gamma})$$
$$\Rightarrow (ac,bc) \in \rho_{\alpha}^{*} |_{S_{\beta\gamma}}$$
$$\Rightarrow (ac,bc) \in \rho_{\alpha}^{*}.$$

Similarly, we may show that $(ac,bc) \in \rho_{\alpha}^*$. This show that $\rho_{\alpha}^* \in Con(S)$. By arbitrariness of α , we get S is P-semigroup.

From Theorem 2.3. we know the sufficient condition of which a semigroup is the *P*-semigroup. If $S \in CR$, then we have immediately the following corollary.

Corollary 2.4. Let $S \in CR$. If $S = [Y; S_{\alpha}, \varphi_{\alpha,\beta}] \in NBG$, then S is P - completely regular semigroup.

From Corollary2.4., it is obvious that all the subclass of NBG, i.e. NB, ONBG, Clifford, is P-

completely regular semigroup.

References

M Petrich & N R Reilly. (1999). Completely Regular Semigroups. New York: Wiley.

Howie, J.M. (1995). Fundamentals of Semigroup Theory, Oxford Science Publications, Oxford.

Pastijn, F., Idempotent distributive semirings II, Semigroup Forum 26 (1983), 151–166.

X.Z. Zhao, Guo Y.Q. & Shum K.P. (2001). *D-subvarieties of the variety of idempotent semi- rings*. Algebra Colloq 9, pp 15-28.