
Vol. 2, No. 3                                                                  Modern Applied Science 

 110 

 

 

P-completely Regular Semigroup 
Xiujuan Pan 

Department of Mathematics, Tianjin Polytechnic University 
Tianjin 300160, China 

E-mail: pxj10628@126.com 
Abstract  
 In order to prove a completely regular semigroup with the strong semilattice structure is P -completely regular 
semigroup. Using the strong semilatice structure and the property of congruence.  The sufficient condition of which a 
completely regular semigroup is P -completely regular semigroup is have the strong semilattice structure, and The 
subclass NBG  of  the completely regular semigroup is P -completely regular semigroup. 
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1. Preliminaries 
Definition 1.1.  A semigroup S  is a semilatticeY   of semigroup αS }( Y∈α  if there exists an epimorphism ϕ  of 
S  onto the semilattice Y  with  ααϕ S=−1 }( Y∈α . We write ];[ αSYS = . 

Definition 1.2.  Let ];[ αSYS =  be a semilattice of semigroups.  If for every Y∈α  every congruence on αS  can 
be extended to a congruence on S ,then S is said to be a P -semigroup. 

Definition  1.3. A semigroup S  is called completely regular, if for every Sa∈ , there exists an element Sx∈  
such that axaa =  and xaax = . 
In [1], we have known that completely regular semigroup  ];[ αSYS =  is a semilattice of  completely simple 

semigroups αS . In fact, every αS  is a D -class of S .  If every congruence on D -class of S  can be extended to a 
congruence on S , then S  is said to be a P -completely regular semigroup. 

Definition 1.4. Let ];[ αSYS =  be  a semilattice of semigroup. For each pair Y∈βα , such that βα ≥ , let 

βαβαϕ SS →:,
 be a homomorphism such that 

(i)  
ααϕ Sa 1, = , 

(ii)  γβαϕϕϕ γαγββε ≥≥= if,,,
 

on αα SS Y∈∪=  define a multiplication by 

),()()( ,, βαϕϕ αββαβα ∈∈= babaab  

with this multiplication S  is a strong semilattice Y  of semigroup αS  to be denoted by ],;[ ,βαα ϕSYS = . 

In this paper, we mainly give some views on a open problem“ characterize all the P − completely regular semigroups ”,  
and find the sufficient condition that a completely regular semigroup is the P -completely regular semigroup. 
We shall use the same notations and terminology to [1]. In this paper, we are interested in the symbols: 
CR                           of completely regular semigroups, 

NB                           of normal bands, 

)(SCon                      of all congruences on S, 

NBG                        of normal cryptogroups, 

ONBG                       of normal orthogroups, 

Clifford                      of clifford semigroups. 
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2. The Main Result 
Let ],;[ ,βαα ϕSYS =  be a strong semilattice of semigroups. If )( ααρ SCon∈ , then for every Y∈β  we can define a 
new relation  

βαβα ρρ SY |**
∈∪=  as follows: 
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Theorem 2.1. Let ],;[ ,βαα ϕSYS =  be a strong semilattice of semigroups, if )( ααρ SCon∈ , then )(|*
βα β

ρ SConS ∈ . 

Proof.  We need prove from two parts as follows: 
(1) Assume 

βαβ Svu ∈> ,,  and 
βαρ Svu |),( *∈ , then by the definition 

of *
αρ  we have =),( ,, αβαβ ϕϕ vu

βαρ S|
* *

αρ= .For any
ααφβ ϕ ScSc ∈∈ ,, ,since )( ααρ SCon∈ ,this imply that  

∈⇒⇒ ),()()())(())(( ,,,),,, vcucvcuccvcu αβααβαβαβααβαβ ϕρϕϕϕρϕϕ
βαρ S|

* . 

Similarly,we can show that ∈),( cvcu
βαρ S|

* .Thus )(|*
βα β

ρ SConS ∈ . 

(2) Assume 
βαβ Svunm ∈< ,,,, ,and 

βαρ Svunm |),(),,( *∈ .Form the definition of *
αρ ,there exist αSdcba ∈,,, ,so that 

ndvb == βαβα ϕϕ ,, , ,and ** ),(,),( αα ρρ ∈∈ dcba .Since )( ααρ SCon∈ ,we have αρ∈),( bdac , 

  
βαβαβα ρϕϕ Sbdac |))(,)(( *

,, ∈⇒  

  ))((|))(( ,,
*

,, βαβααβαβα ϕϕρϕϕ
β

dbca S⇒  

  .|),( *
βαρ Svnum ∈⇒  

Thus 
βαρ S|

* )( βSCon∈ .From (1) and (2),we conclude that 
βαρ S|

* )( βSCon∈  for any .Y∈β  

We have immediately the following corollary and it’s proofs are omitted.  
Corollary 2.2.  Let ],;[ ,βαα ϕSYS =  be a strong semilattice of semigroups, and 

βSba ∈, .If *),( αρ∈ba  , then  

αγβγβ ρϕϕ ∈),,( ,, ba  for any .βγ ≤  

Theorem 2.3.  If ],;[ ,βαα ϕSYS =  be a strong semilattice of semigroups,then S  is a P -semigroup. 

Proof. We need prove for every Ya∈  every congruence on αS  can be extended to a congruence on S , that is to say, 
we only need prove *

αρ )(SCon∈ . Let *),( αρ∈ba . By the definition of *
αρ  as (1�), we know a  is in the same 

subsemigroup of S with b .Assume that 
βSba ∈, , then for any Sc∈ , let 

γSc∈ , by Definition1.4.,we have 

))((,))(( ,,,, βγββγββγββγβ ϕϕϕϕ cbbccaac == . 

Since 
βαρ Sba |),( *∈ , thus 

  )(|),( *
,, βγαβγββγβ βγ

ρϕϕ SConba S ∈∈⇒  

  ))((|))(( ,,
*

,, βγγβγβαβγγβγβ ϕϕρϕϕ
βγ

cbca S⇒  

  
βγαρ Sbcac |),( *∈⇒  

  .),( *
αρ∈⇒ bcac  

Similarly, we may show that *),( αρ∈bcac . This show that *
αρ )(SCon∈ .  By arbitrariness of α , we get S  is 

P -semigroup. 
From  Theorem2.3. we know the sufficient condition of which a semigroup is the P -semigroup.  If CRS ∈ , then we 
have immediately the following corollary. 
Corollary 2.4. Let CRS ∈ . If NBGSYS ∈= ],;[ ,βαα ϕ ,then S  is P - completely regular semigroup. 

From Corollary2.4.,it is  obvious  that  all  the  subclass  of NBG , i.e. ,,, CliffordONBGNB is P - 
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completely regular semigroup. 
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