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Abstract

In order to prove a completely regular semigroup with the strong semilattice structure is P -completely regular
semigroup. Using the strong semilatice structure and the property of congruence. The sufficient condition of which a
completely regular semigroup is P -completely regular semigroup is have the strong semilattice structure, and The
subclass NBG of the completely regular semigroup is P -completely regular semigroup.
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1. Preliminaries

Definition 1.1. A semigroup S is a semilatticeY  of semigroup §_(a €Y} if there exists an epimorphism ¢ of
S onto the semilattice ¥ with gp™' = S, (aeY}. We write § =[Y; S 1

Definition 1.2. Let §=[y;5 ] be a semilattice of semigroups. If for every aeY every congruence on S can

be extended to a congruence on §.then §is said tobea P -semigroup.

Definition 1.3. A semigroup S is called completely regular, if for every qe S, there exists an element x € S
such that g =axa and ax=xa.

In [1], we have known that completely regular semigroup §=[Y;S ] is a semilattice of completely simple

semigroups S . Infact, every § isa D-classof §. Ifevery congruence on D-classof S can be extended to a

congruence on §,then S issaidtobea P -completely regular semigroup.

Definition 1.4. Let §=[y; S, 1 be a semilattice of semigroup. For each pair «,feVY such that & > ,3 , let
PupiSa—S, be a homomorphism such that

W g, -1,

W) 9,05, =0., if azfzy

on S=u,_ S, define a multiplication by

ab=(a@, ;) (be, ;) (a€a,be B)

with this multiplication § is a strong semilattice Y of semigroup S to be denotedby §=[V;S 0, 51

In this paper, we mainly give some views on a open problem® characterize all the P — completely regular semigroups ”,
and find the sufficient condition that a completely regular semigroup is the P -completely regular semigroup.

We shall use the same notations and terminology to [1]. In this paper, we are interested in the symbols:

CR of completely regular semigroups,
NB of normal bands,

Con (S) of all congruences on S,

NBG of normal cryptogroups,

ONBG of normal orthogroups,

Clifford of clifford semigroups.
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2. The Main Result
Let §=[v; S, 0,41 be a strong semilattice of semigroups. If p, €Con(S,)> then for every g eY we can define a

. * * .
new relation Lo =Yy Py |s,, as follows:

P B=a
Pols,=1{ap, ; b9, ) €S, xSy |(ab)ep,yuly  f<a (1)
{(M’V)eSﬁXS[} |(u¢ﬂ,zx ’Vq)[},a)epa} ﬂ>a

Theorem 2.1. Let § =[Y; S, 0, 4] be a strong semilattice of semigroups, if p_ e Con(S,), then o, |s,, e Con (S,)-
Proof. We need prove from two parts as follows:
(1) Assume B> q,u,ve S, and (y,v)e on \Sﬁ , then by the definition
of p we have UPy e, VPy,) = o, \Sﬂ = p, Foranyc e S,.c0,, €8, ,since p_ e Con(S,),this imply that
WPy )P )P (VPp o) NPy ) = WPy, P, (VP = (uc,ve) € p |5 -
Similarly,we can show  that (cu,cv) e oo |s,, .Thus o, \s,, e Con(S,)-
(2) Assume B <o m,nu,ve S, and  (m,n),(u,v) e o, |Sﬁ .Form the definition of p’ there exist a,b,c,d € S, ,s0 that
b, ,=v.do, , = n.and (a,b)e p, , (c,d) e p,-Since p_ e Con(S,),wehave (ac,bd)e p, >
= ((a0) @, 5, (bd) @, ;) € p, s,
=@, ), )P, s, b, )Ndo, ;)
= (um,vn) € p, |s,, .
Thus p; \Sﬁ e Con(S,) .From (1) and (2),we conclude that o, |Sﬂ e Con(S,) forany gev.

We have immediately the following corollary and it’s proofs are omitted.

Corollary 2.2. Let §=[V;S,_,¢, 51 be a strong semilattice of semigroups, and g,he S 5 If (a,b)e p, . then
(ap,,.boy,.) € p, forany y<p.
Theorem 2.3. If §=[v;S_,p, 51 be a strong semilattice of semigroups,then S isa P -semigroup.

Proof. We need prove for every geY every congruence on § = can be extended to a congruence on §, that is to say,

we only need prove p° e Con(S). Let (a,b) € p, - By the definition of ,* as (101), we know a is in the same
subsemigroup of S with b .Assume that abeSy, then forany ce S, let ¢ ¢ S, by Definition1.4.,we have
ac = (a(pp,/jy )(C(D/},ﬁy) , be= (b(ﬂ/;,py )(C(D/j,/;y) :
Since (g,b) € p; ls , thus
a op

= (a¢ﬁ,ﬁyab(0ﬂ,ﬂy) € ,0; |s/,y € CO”(Sﬁy)

= (a¢7ﬂ,/fy )(C¢y,ﬂy ),0; |sﬁ7 (b¢7/;’,/fy )(C¢y,ﬁy )

= (ac,bc) e p, ls,

= (ac,bc) € p;.
Similarly, we may show that (gc,bc)e p;. This show that p; e Con(S). By arbitrariness of «, we get § is

P -semigroup.

From Theorem2.3. we know the sufficient condition of which a semigroup is the P -semigroup. If §e CR, then we
have immediately the following corollary.

Corollary 2.4. Let SeCR.If §S=[V;S_,p, sle NBG then § is P - completely regular semigroup.

From Corollary2.4.,it is obvious that all the subclass of NBG, ie. NB , ONBG , Clifford ,is P -
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completely regular semigroup.
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