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Abstract 
The connectivity of distributed network within buildings depends critically on the shape of the operating environment. 
We propose the mean blockage as a new measure for concave shapes. The formal definition and an analytical 
evaluation of this measure will be shown. An algorithm has been developed to facilitate the evaluation of this measure 
for complicated concave polygons. The inadequacies of a couple of existing shape measures will be discussed and 
contrasted with the mean blockage measure for a variety of concave polygons. A possible general relationship between 
the blockage measure and the number of distributed sensors required to maintain high connectivity probability in 
concave regions will be presented. 
Keywords: Distributed networks, Blockage, Concave polygons, Concavity measure, Connectivity  
1. Introduction 
Distributed network [7] is concerned with deploying multiple sensors to operate and gather information in an unknown,
cluttered and possibly hazardous environment to achieve a common goal. One of the key decisions to be made in 
implementing a distributed network for a particular application is deciding on the optimal number of sensors that should 
be deployed. Besides being an important issue to the sensor network research community, it is also central to the 
research of cooperative systems. For cooperative systems, teams of multiple robots (which can be treated as sensors) are 
deployed to complete a certain task. Researchers have proposed different solutions to the problem of determining the 
optimal number of nodes by considering different constraints. In [11], Mei et al looked at this problem from the 
perspectives of energy constraints, i.e. they examined the relationships between the optimal number of nodes required to 
serve random requests under energy constraints. Hayes [1] defined a cost function which relates the number of robots 
(sensors), time taken to complete the search task and the moving speed of each robot. After that, he optimized the 
number of robots required for a search task by determining the minimum point of the cost function. 
We argue that for distributed networks, the number of nodes required for a particular application should be optimized 
by ensuring the network is formed with high connectivity probability within the operating environment, thus allowing 
the exchange of information among individual sensors of the network. The rationale is that the network can maximize 
the utilization of the information gathered by every node through information sharing. This optimization problem is 
central to the ad-hoc networks [3] research community. In the ad-hoc network connectivity problem domain, the interest 
is in finding out how easily connections can be established among the individual nodes of an ad-hoc network. On the 
other hand, for our problem, the array of sensor nodes with Random Direction model mobility [9], can be treated as an 
ad-hoc network operating within a given operating environment and we are interested in the optimal number of nodes 
required to maintain high connectivity probability.  
While the potential applications of distributed sensor networks are vast, we are interested in small scale distributed 
networks which are deployed inside buildings to carry out surveillance or search. The sparse deployment of sensor 
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network in constrained area is one of the applications of distributed sensor network, as noted in [5]. Operating inside 
buildings poses another challenge for distributed networks: the concave boundary. A distributed sensor networks will 
find it harder to maintain connectivity operating inside concave boundaries than convex ones, as shown in Figure 1.1. 
Figure 1.1 demonstrates the definition of connectivity. Two randomly moving sensors are connected if and only if the 
distance between them, D, is smaller than their communication range (transmitting/receiving range), R. For simplicity, 
we shall assume that the communication range of each sensor is the same and the communication can only be 
established if the two sensors are within line-of-sight (LOS) of each other and that communication in a multi-hop 
manner (pass information to one or more intermediate sensors and have the information routed to the target) is assumed 
to be possible. This assumption will hold reasonably well for operation within an enclosed area (e.g. a housing unit of 
typical size 10m by 10m) and the technology which can support these types of communication will be the commercially 
available IEEE 802.11b wireless network and Bluetooth. The LOS of a sensor is the unobstructed view which the 
sensor can see/detect. A fully connected network is one in which there exists at least a path between any two sensors 
such that they can communicate to each other. The connectivity probability is the probability that the array of sensors 
can form a fully connected network given that each sensor is at a different position at any given time.
It is apparent that determining the optimal number of sensors to be deployed for a given search task is similar to the 
connectivity problem of an ad-hoc network. The connectivity probability of an ad-hoc network subjected to 
environment and sensory constraints is an active research field. Each node of the network is moving randomly inside an 
area and can either have a fixed transmitting range (connectivity probability is a function of distances between nodes) or 
that the connection between two nodes is fixed (determined by a probability function). The main research interest in the 
ad-hoc network domain is the conditions which ensure high network connectivity probability [2, 4, 8]. Bettstetter and 
Zangl [2] included the border effects in their study on ad-hoc networks inside a circular area. Ferrari and Tonguz [4] 
approached the connectivity problem from the viewpoint of the minimum number of neighbors required for each node. 
In [8], Santi studied the critical transmitting range for each node in an ad-hoc network under certain node mobility 
models. Despite the different approaches, the ad-hoc networks discussed in the literatures are concerned with convex 
areas (circle or rectangle) and the results are not directly applicable to our problem. Contrary to the focus on convex 
areas, for connectivity of distributed ad-hoc sensor networks within buildings, we are interested in concave regions.
In this paper, we will define a new measure of the concavity of a shape – the blockage. We argue that this new measure 
is a more natural choice in the study of connectivity probability for a distributed sensor network operating in a concave 
region (polygon). We will show how to evaluate the blockage analytically for a simple concave shape. Then, an 
algorithm will be provided to facilitate the computation of the blockage of a concave polygon. Results relating the 
blockage values and number of sensors required for high connectivity probability for various concave polygons will be 
shown. Comparisons with other shape measures will also be made to show the relationship of blockage measure with 
the connectivity probability of sensors inside concave areas.
2. Blockage – a new measure of concavity 
Currently, there are many different shape measures studied in the literature [6]. However, for the connectivity problem 
inside a concave region, there is a more natural measure of concavity which has an intuitive physical meaning. Consider 
a mission in which sensors are deployed to search for a target inside a convex area. If the communication range R is 
larger than the maximum chord joining any two points of the boundary, the distributed sensor network will be 
connected at all time, i.e. connectivity probability is equal to 1. Thus, any number of sensors in the convex area will be 
able to maintain a fully connected network. On the other hand, if the same number of sensors are required to maintain 
connectivity in a concave area with exactly the same maximum chord length, the connectivity probability will be less 
than 1 (see Figure 2.1).
The effect of the concave corner is shown in Figure 2.1b. Node A and B cannot establish connection because their line 
of sights are blocked by the concave corner. By now, one can see that the problem of connecting multiple randomly 
moving sensors in a concave area is essentially related to how large an area each sensor can cover within its line of sight 
(LOS). This close relation between the connectivity probability and the field of view of the points within a particular 
operational area is the main motivation for the new measure defined presently.

Consider a two dimensional operational space A (of total area TA ).  Suppose a sensor is located at (xo, yo) and is 
within A.  The field of view for the sensor is: 

        ,
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the area within the line of sight of the node at 
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L x y                            (Eq.2.1)     

The blockage is simply:  
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     The mean blockage is defined as “the mean of the blockage values for every location of the sensor inside the 
concave shape”, normalized by the total area enclosed by the boundary, TA .
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(Eq.2.3)
3. Analytical calculation of blockage for a simple concave shape 
Before we discuss the algorithm to compute the mean blockage value of an arbitrary polygon, we shall calculate the 
mean blockage values for a simple concave shape, namely “L-shape”, analytically (see Figure 3.1a). To evaluate the 
mean blockage of the L-shape boundary as shown in Figure 3.1, we first notice that the line connecting the concave 
corner and the vertex joining two sides of length 2 is the line of symmetry of this shape. Due to this symmetry, we need 
only to evaluate blockage for half the area.   
In Figure 3.1b, we further divide the lower half of the L-shape into three sub-regions, namely a, b and c. a’, b’ and c’
are the mirror images of a, b and c respectively. We will need to evaluate blockage for points in a, b and c only. We 
start by evaluating blockage for points inside sub-region a and b. As depicted in Figure 3.2, we use polar coordinate 
system with the origin (O) at the concave corner. The axes of the polar coordinates ( =0), which are used for evaluating 
the blockage for region a and b, are assigned to be 90 degrees apart. For a point (r, ) within region a and b, the area 
that this point can not see will be equal to:  
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For points in region c, the whole area is within their field of view, thus, the blockage values for these points are 0, i.e. 
cB =0. The mean blockage values of L-shape can now be evaluated: 
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4. Algorithms to compute blockage for a point inside a concave polygon 
As seen from the definition of the blockage term, we need to determine the area which is within (or not within) the LOS 
of all the points inside the operational area. This is highly complicated, if not impossible, to be computed analytically. 
An algorithm to compute the blockage measure for a point inside a concave polygon is described in this section (see 
Algorithm 4.1 for pseudo-code). The mean blockage measure can be computed by applying this algorithm (Algorithm 
4.1) to k  (depending on the resolution) points covering the concave area. The inputs to the algorithm are the vertices 
of the concave polygon and the point P for which the blockage measure is to be computed. Without loss of generality, 
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we assume the vertices of the boundary are given in the “correct sequence” and in the “anti-clockwise direction”. This 
means that given a list of n vertices, V 1 2 1 1, ..., , ,..., , ,..., ,n i i n nV V V x y x y x y , one can redraw the concave 

polygons simply by connecting the consecutive vertices together, i.e. connecting iV  and 1iV  for all 1 i n . The 
“anti-clockwise direction” way of listing the vertices means that when the vertices are connected in sequence to form 
the edges of the polygon, the area of interest is always on the left of the edges. Equivalently, it means that the 
cross-product of the vectors iE  (a vector connecting vertex (i+1) from vertex i, 1i i iE VV ) and 1iE  will be positive 
if 1iV  is a convex corner. 

Input: Vertices of Polygon, V, Coordinates of a point, P = (x, y). 
Output: Blockage of (x, y) in the polygon, B(x, y). 

  1: CV  = FindConcaveCorner(V)

  2: Initialize field of view of point P, P
FOVV  = CV

  3: if P is within V, then
  4:       for each concave corner 

ci CV V do

  5:              Direction = FindBlockedDirection(V, ciV , P)

  6:              if (Direction != 0) then
  7:                ciQ  = FindLOSIntersection(V, ciV , P)

  8:                      ci
DV  = FindDeleteVertices(V, ciV , P)

  9:                P
FOVV  = UpdateFOV( P

FOVV , 1cQ , ci
DV )

10:              end if
11:        end for 
12:        Calculate normalized field of view, F(x, y). 
13:        Calculate blockage, B(x, y). 
14:        Return B(x, y). 
15: end if 
Algorithm 4.1 Overview of algorithm to compute blockage of a point. 
The algorithm starts by determining which of the vertices are “concave” (Algorithm 4.2). A concave vertex is one with 
an internal angle greater than 180º. As mentioned above, this can be done by checking the sign of the cross product of 

1i iE E . This step is essential because the LOS of any point within a concave polygon will only be blocked by edges 
connecting to concave vertices. After this step, the set of m concave vertices 

1 2, ...,C c c cmV V V V  will have been 
determined (see Figure 4.1a).
Input: Vertices of Polygon, V.
Output: Vertices of all concave corners, CV , and number of concave corners, m.
1: Initialize m = 0, CV  = , n = number of vertices 
2: for 1 i n do
3:     Find the vector of linking vertices 1iV  and iV  ( 1iE ).
4:     Find the vector of linking vertices iV  and 1iV  (

iE ).

5:    if cross product of 1i iE E  > 0 then

6:        CV =
C iV V , m=m+1 

7:    end if
8: end for
9: Return CV  and m.
Algorithm 4.2 FindConcaveCorner(V). 
Input: Vertices of Polygon, V, a concave vertex, ciV , and a point P.
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Output: Direction of blocking of ciV  on point P.

1: if ciV  is within LOS then

2:     if 1ciV and 1ciV  are visible to point P then

3:      return not_blocking
4:     else if 1ciV  is not visible to point P then

5:      return clockwise_blocking 
6:     else    
7:      return anti-clockwise_blocking 
8:     end if
9: else return not_blocking 
Algorithm 4.3 FindBlockedDirection(V, ciV , P).

The second step of the algorithm (Algorithm 4.3) determines which of the edges of those concave vertices determined 
in step one are blocking the LOS of point P. Depending on the position of P relative to each concave vertex, say 1cV ,
the concave vertex can either 1) have no blocking effect 2) block certain area from the LOS of P with the edge linking 

1 1cV  and 1cV   3) block certain area with edge connecting 1cV  and 
1 1cV . If the concave vertex 1cV  is within the LOS 

of P, the algorithm will determine which type of blocking effect 1cV  has on P. The algorithm will also then check 
which of the vertices, 1 1cV  or 1 1cV , is not within LOS of point P. If both 1 1cV  and 1 1cV  are within LOS of P, then 
the concave vertex does not have blocking effect on P (case 1). If 1 1cV  is not visible to P, then it can be concluded that 
edge 1 1 1c cV V  is blocking the view of P (case 2). Vice versa, if 1 1cV  is not visible, it can be concluded that 1 1 1c cV V  is 
blocking the view of P (case 3). To facilitate our discussion, we shall refer to case 2 as “anti-clockwise” blocking and 
case 3 as “clockwise” blocking (see Figure 4.1b). On the other hand, if 1cV  is not within LOS of P, we conclude that 
there is no blocking effect due to 

1cV .

The next step is to determine which of the vertices from V need to be deleted as a result of the blockings by all the 
concave vertices CV . In order to achieve this, connect P and 1cV  to form a straight line 1cPV . Extend this line in the 
direction of 1cPV  to a large enough extent, say to point T, such that the length of PT  is larger than the maximum 
chord length of the concave polygon. Next, we find the intersection point(s) of PT  with the edges of the boundary 
( 1 2VV , 2 3V V ,…, 1nV V ). Depending on the concave polygon, there can be many intersections. If this is the case, take the 
intersection point, say 1cQ , which is farthest away from P and is within LOS of P. Through this process, we will gain 
both the knowledge of point 1cQ  and the boundary edge that 

1cPQ  intersects, say edge 
1k kV V  (see Figure 4.2a). 

The previous two steps will be repeated for all the concave vertices in CV . We can now figure out which vertices are 
not within LOS of P by using the results from the previous steps. For example, concave corner 1cV  has 
“anti-clockwise” blocking effect and the intersection point 1cQ  is found to be on edge 1k kV V . From these two pieces of 
information, we know that the vertices which are not within LOS are 1

1 1 1 2, ,...,c
D c c kV V V V . Thus, if a concave vertex, 

say ciV , has no blocking effect on P, ci
DV . To compute the field of view (FOV) of point P, we start by assuming 

that the FOV of P is the entire area enclosed by the concave polygon and denote it as a list of vertices (the same way as 
we described a concave polygon), ' 1 2, ,...,P

FOV nV V V V . Then, vertices in ci
DV , 1 ci cm , are deleted away and all 

the intersection points ciQ  are inserted (see Figure 4.2b). The blockage value is then computed using the Eq.2.2 of 
Section 2.   
5. Blockage values and connectivity probability (random search) 
The algorithm has been tested on several concave shapes (Figure 5.1) and the blockage values are tabulated in Table 5.1. 
To determine the mean blockage value of a concave shape, the algorithm discussed in Section 4 is applied together with 
some standard algorithms which are used to solve this type of double integral problem [10]. Showing also in Table 5.1 
are the compactness and bending energy measures of the various concave shapes. The definitions of compactness and 
bending energy [6] are:

2

4 Area
Compactness

Perimeter
, 2

0

1 n

i

Bending energy k i
n
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, where k i  is the discrete curvature. The chain codes for all of the concave shapes are given in the Appendix, 
together with the coordinates of the vertices for the “3-room house floor plan”, which is an actual floor plan for a 
typical housing unit in Singapore. The mean blockage value for the “L1 shape” is very close to the analytical value, 
0.111, we have determined in section 3. Also, the analytical blockage value for T-shape (0.125) is very close to the 
simulated result (0.123). The results listed in Table 5.1 are in ascending order of the mean blockage values and are 
plotted in Figure 5.2.  
Recall that the motivation of inventing blockage measure is to come out with an efficient measure to describe the 
connectivity probability of the concave operational area. In other words, it is desirable that by evaluating the blockage 
values of a concave shape, we will know roughly how difficult (or easy) it is for an array of sensors to maintain 
connection with each other. Thus, we investigate the number of sensors required (N) to achieve connectivity probability 
of greater than 90% and 95% when they are deployed to carry out a purely random search task. The purely random 
search task is one in which all the sensors’ movements are random and are independent to the movements of all the 
other sensors (except for collision avoidance). This is a well established way of searching and works well when there is 
little prior information about the search task or the reliabilities of the sensors are low.  
Input: Vertices of Polygon, V, a concave vertex, ciV .
Output: N95% N95%.
  1: Initialize N = 2, flag = FALSE. 
  2: Do 
  3:     for sample = 1 to NSAMPLE
  4:      Generate N points randomly (with uniform distribution) inside polygon V.   
  5:      if (N points are connected) 
  6:             Count = Count +1    
  7:      end if
  8:     end for
  9:     if (Count > 0.95*NSAMPLE) 
10:        N95% = N 
11:  flag = TRUE 
12:     end if 
13:     N = N + 1 
14: while (flag = FALSE)   
Algorithm 5.1 ComputeN95%(V, ciV , NSAMPLE). 
The random movements of the sensor nodes are simulated as a random point process [5]. In a single trial, a set of N 
points are generated uniformly and randomly inside a concave environment of interest and the connectivity of these N 
points is determined. If the N points are connected, the trial is considered to be “successful”. The connectivity 
probability of N sensor nodes moving randomly inside a concave environment is approximated by running NSAMPLE 
trials and counting the number of trials which are “successful”. For a particular concave shape, this set of simulation is 
run for 

95%2 N N , where 95%N  is the number of sensor nodes required to maintain a fully connected network with 
95% probability inside the concave shape. Depending on the complexity of the concave shapes, 95%N  varies and one 
can only discover it by increasing N until the connectivity probability is close to 95%. The pseudo code for this iterative 
process is summarized in Algorithm 5.1 and the results are shown in Table 5.1. 
Figure 5.2 shows the relationship between N and the blockage values for various concave polygons. The behaviors of 
the relationships between N and blockage are expected. As blockage tends to zero, which corresponds to a convex shape, 
N should tend to 2 (1 will be meaningless for connectivity). On the other extreme, as blockage tends to 1, which 
corresponds to a concave shape so complex that it is equivalent to the case where all sensors have zero communication 
range, the N value will tend to infinity. 
Having shown the usefulness of blockage, a rule of thumb can be inferred on the number of sensors required to maintain 
high connectivity probability (90% or 95%) when carrying out random search task. Figure 5.3 is the plot of the same 
data as in Figure 5.2, but in natural-logarithm scale, i.e. ln N  vs ln 1 B . As seen from Figure 5.3, there exists 
a similar third order polynomial relationship for both 90% and 95% connectivity. In addition, this polynomial 
relationship between ln N  and ln 1 B  has the desired behavior that N tends to infinity when mean blockage 
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value tends to 1. For the 95% connectivity curve, the model also passes through N=2 when mean blockage value tends 
to 0. This relationship should provide a fast and good estimate for real operation considerations. 
Another observation which can be made from this study is the limitation of random search strategy for distributed 
sensor networks operating in concave regions.  The number of sensors required to maintain high connectivity inside a 
3-room housing unit is around 75 (Table 5.1), which, in real operation, may not be as feasible. Thus, as a rule of thumb, 
if the mean blockage value of a particular concave region of interest is higher than 0.5 (which requires more than 20 
sensors to maintain 95% connectivity), it is generally not feasible to employ the random search strategy.  
On the other hand, compactness and bending energy fail to capture this elegant and simple relationship (see Figure 5.4). 
For example, “Z1”, “Z2” and “+” have the same compactness values measures but the number of sensors required for 
full connectivity in these boundaries are different. Similarly, bending energy does not perform well if one is to relate it 
to the distributed sensor network connectivity (check shape “L2”, “Z1”, “Z2”). In short, mean blockage has been shown 
to be more appropriate in the study of network connectivity for concave shapes. 
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Table 5.1 Compactness, bending energy, blockage measure of the concave shapes in Figure 5.1. 

Shape Compactness Bending Energy Mean Blockage N (for 90%) N (for 95%) 

L1 0.5890 3.000 0.110 3 4 

L2 0.5236 2.667 0.111 3 4 

T 0.5026 3.200 0.123 3 4 

+ 0.4363 4.000 0.161 4 5 

X1 0.4363 3.333 0.215 5 6 

Z1 0.4363 2.667 0.219 5 6 

Z2 0.4363 2.667 0.278 7 9 

U 0.4363 2.667 0.287 7 9 

F1 0.3847 2.857 0.319 8 10 

F2 0.2827 2.800 0.367 11 14 

X2 0.2827 2.800 0.404 12 14 

X3 0.3436 2.500 0.432 12 15 

X4 0.3699 4.400 0.462 14 16 

E 0.2400 2.000 0.534 20 23 

C 0.1841 1.500 0.611 31 37 

G 0.1739 1.412 0.641 34 40 

3-Room 0.1758 0.1729 0.679 62 75 
The last two columns show the minimum number of sensors required to get connectivity probability of 90% and 95%. 
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Appendix: Chain codes of concave shapes studied

The details about chain codes can be found in [11]. The chain codes of all the concave shapes are listed in Table A. The 
x-y coordinates of the vertices for the 3-room flat are included in Table A as well. 

Shape Absolute Chain Codes 

L1 0, 0, 2, 4, 6, 6  

L2 0, 0, 0, 2, 4, 2, 4, 2, 4, 6, 6, 6 

Z1 0, 0, 2, 4, 2, 2, 4, 4, 6, 0, 6, 6 

Z2 0, 0, 0, 2, 4, 4, 2, 4, 4, 6, 0, 6 

F1 0, 2, 2, 0, 2, 4, 2, 0, 2, 4, 4, 6, 6, 4, 4, 6, 0, 0, 6, 6 

F2 0, 0, 0, 2, 4, 2, 0, 2, 4, 4, 6, 6, 4, 6 

T 0, 2, 0, 2, 4, 4, 4, 6, 0, 6 

U 0, 0, 0, 2, 2, 4, 6, 4, 6, 4, 6, 6 

+ 0, 2, 0, 2, 4, 2, 4, 6, 4, 6, 0, 6 

C 0, 0, 0, 0, 0, 2, 2, 4, 6, 4, 4, 4, 2, 2, 2, 0, 0, 0, 6, 0, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6 

X1 0, 2, 0, 2, 4, 2, 4, 4, 6, 0, 6, 6 

X2 0, 2, 4, 1, 3, 4, 6, 0, 5, 7 

X3 0, 2, 2, 0, 2, 4, 4, 4, 2, 2, 4, 6, 6, 4, 6, 0, 0, 0, 6, 6 

X4 0, 0, 0, 2, 2, 0, 2, 4, 4, 6, 6, 4, 2, 4, 6, 6 

E 0, 0, 0, 2, 4, 4, 2, 0, 0, 2, 4, 4, 2, 0, 0, 2, 4, 4, 4, 6, 6, 6, 6, 6 

G 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 0, 6, 4, 4, 4, 2, 2, 2, 0, 0, 0, 0, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6 

3-Room 

Vert. x y  Vert. x y  Vert. x y 
1 0 0  12 9.1 17.1  23 7.2 11.8
2 7 0  13 9.1 17.3  24 7 11.8
3 7 6.4  14 11.6 17.3  25 7 19.6
4 7.2 6.4  15 11.6 17.1  26 0 19.6
5 7.2 0  16 11.1 17.1  27 0 9.8 
6 13.6 0  17 11.1 12.1  28 7.2 9.8 
7 13.6 11.9  18 13.6 12.1  29 7.2 8.2 
8 9.1 11.9  19 13.6 19.6  30 7 8.2 
9 9.1 12.1  20 12.7 19.6  31 7 9.6 

10 10.7 12.1  21 12.7 21.6  32 0 9.6 
11 10.7 17.1  22 7.2 21.6     
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