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Abstract 
In statistical analysis of crash count data, as well as in estimating Safety Performance Functions (SPFs), the 
failure of Poisson equidispersion hypothesis and the temporal correlation in annual crash counts must be 
considered to improve the reliability of estimation of the parameters. After a short discussion on the statistical 
tools accounting for dispersion and correlation, the paper presents the methodological path followed in 
estimating a SPF for urban four-leg, signalized intersections. Since the case study exhibited signs of 
underdispersion, a Conway-Maxwell-Poisson Generalized Linear Model (GLM) was fitted to the data; then a 
quasi-Poisson model in the framework of Generalized Estimating Equations (GEEs) was performed in order to 
account for correlation. 

Results confirm that dispersion and correlation are phenomena that cannot be eluded in the estimation of SPFs 
under penalty of loss of efficiency in estimating model parameters. Generalized Estimating Equations overcome 
this problem allowing to incorporate together dispersion and temporal correlation when a quasi-Poisson 
distribution is used for modeling crash data. Moreover, whereas GEE regression is handy (many statistical 
software packages have already implemented GEE functions), the interest of COM-Poisson regression, because 
of difficulties in interpreting the model parameters and in arranging COM-Poisson codes, is still limited to the 
research field. 
Keywords: safety performance function, signalized intersections, COM-Poisson model, road safety 

1. Introduction 
It is well-known that Safety Performance Functions (SPFs) allow to estimate the expected number of crashes on 
entities (road sections or intersections). Differently from models to evaluate the potential accident rate (Mauro & 
Cattani, 2004), through a mathematical equation SPFs express the average crash frequency of a site as a function 
of traffic flow and other site geometric and/or functional characteristics. In statistical analysis of crash count data 
some problems must be addressed to improve the reliability of the estimations. Data and methodological issues 
associated with crash-frequencies are widely discussed by Lord and Mannering (2010) and by Turner et al. 
(2011); two of these issues will be focused in the following. First, the data structure can invalidate equidispersion 
hypothesis on which the Poisson model is founded; moreover, the same crash-data generating process makes 
inefficient estimations based on the traditional Poisson model. In order to relax the Poisson assumption of 
equidispersion, linear exponential family models incorporating a dispersion parameter, as well as 
quasi-likelihood methods, represent a potential solution to this question. Second, with many years of data, it is 
necessary to account for the year-to-year variations in crash counts because of the influence of factors that can 
change every year. This creates a temporal correlation that affects the reliability of the SPF estimates obtained 
through traditional estimation procedures of the model.  

Starting from these considerations, the main purpose of the paper is to show how estimates efficiency can be 
improved taking into account either dispersion and temporal correlation in annual crash counts. In case of 
overdispersion, the Generalized Estimating Equations (GEEs) method with Negative Binomial distribution (NB1 
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or NB2) is an effective tool to address the mentioned problems and to increase efficiency of estimates (Lord, 
2006); these models take into account for overdispersion by means of a parameter called overdispersion 
parameter  (with >0); moreover, it is possible to account for correlation, too. Underdispersion, instead, is a 
phenomenon which has been less convenient to model directly than overdispersion, mainly because it is less 
commonly observed. Oh et al. (2006) report that crash data show characteristics of underdispersion especially in 
cases where the sample is small and the sample mean is very low; underdispersion can be also caused by the data 
generating process that is independent from the size of the sample or its mean. To further improve estimation of 
the parameters in case of underdispersion, the Conway-Maxwell-Poisson (COM-Poisson) distribution can be 
introduced (Lord et al., 2010; Giuffrè et al., 2011). Unfortunately, currently COM-Poisson distribution cannot be 
used in GEE context; so, the analyst that decides to estimate a SPF with GLM method and COM-Poisson 
distribution is likely to overlook correlation phenomenon running the risk of impairing estimates efficiency.  

Focusing on the latter question, the paper presents a case study that exhibited signs of underdispersion. The 
convenience of handling underdispersion through a GLM COM-Poisson model rather than a GEE quasi-Poisson 
model is evaluated comparing the efficiency of the obtained estimates. It has to be noted that the small sample 
size used in the study could have affected the estimation of model parameters (coefficients and dispersion 
parameter). Therefore, though results can help to highlight the potential of COM-Poisson model and of GEE 
quasi-Poisson model in handling under-dispersed data, further researches should be carried out using different 
dataset (namely larger sample size) to confirm them.  

2. Method 
The methodological approach applied for estimating a Safety Performance Functions at 4-leg signalized 
intersections is described in the following sections. The intersections here analyzed are characterized by being 
inserted in urban area, factor that may directly affect the expected number of crashes. Model performance 
measures used to verify the suitability of the predictive model are also introduced. Before introducing the case 
study, the main issues related to the dispersion and the temporal correlation of the data to be considered in the 
treatment of crash data are extensively accounted for and discussed. 

2.1 Accounting for Dispersion 

Poisson and Negative Binomial (NB) distributions in the context of Generalized Linear Models (GLM) have 
been widely used for some time to analyze crash count data in the estimation of Safety Performance Functions 
(SPFs). The basic regression model for count data is in fact the Poisson model: ytj | xtj ~ Poisson with E(ytj|xtj) = 
µtj =exp (xtj’), where ytj denotes the crash count data at year t and at site j; xtj = [x1tj, …, xktj] is a k dimensional 
vector of covariates at year t and at site j;  = [0, 1,…,k] is the vector of parameters to be estimated. 

In statistical analysis of crash count data, the Poisson model is often inadequate because of its implicit restriction 
on the distribution of observed crash counts; specifically in the Poisson model the variance of the random 
variable is constrained to equal the mean; this property is usually called equidispersion. Different factors can 
invalidate equidispersion hypothesis in the data: consequently, data often exhibit overdispersion (i.e. the variance 
is larger than the mean) and, occasionally they exhibit underdispersion with the mean exceeding the variance. 
The overdispersion can be caused by various factors, such as data clustering, unaccounted temporal correlation, 
model misspecification, but it has been shown to be mainly attributed to unobserved heterogeneity: counts are 
viewed as being generated by a Poisson process, but the analyst ignores that the rate parameter () is itself a 
random variable and so he (or she) does not specify any distribution for it. In order to relax the Poisson 
assumption of equidispersion, quasi-likelihood methods represent a potential solution. By this way few 
assumptions about the distribution for the dependent variable are required; only the relationship between the 
outcome mean and the covariates, and between the mean and variance must be specified (McCullagh & Nelder, 
1989): the variance vtj of the observation ytj is expressed as a known function, g, of the expectation µtj, i.e. vtj =  
g(µtj) where  is the scale parameter. Then a quasi-Poisson distribution can be used to model crash data: the 
mean is the same of the Poisson mean and g(µtj) = µtj; the variance is now a function of the mean: vtj = µtj = (1 + 
µtj, where  is the dispersion parameter. In the case of under-dispersion <0 (and thus 0<<1); in the 
opposite case (> 0 and > 1) the data are overdispersed. Although different Poisson-based distributions have 
been developed to accommodate over-dispersion, the most common distribution for crash count data remains the 
Poisson-gamma or Negative Binomial (NB) distribution. Properties of the traditional NB model were illustrated 
by Cameron and Trivedi (1998). The NB model arises mathematically by assuming that unobserved 
heterogeneity across sites is gamma distributed, while crashes within sites are Poisson distributed. According to 
Hauer (1997), the NB distribution offers a simple way to handle overdispersion, especially when the final 
equation has a closed form; in addition, the mathematics to manage the relationship between the mean and the 
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variance structures is relatively simple. There are two well-known nonnested forms of the negative binomial 
model, denoted as NB1 and NB2 (Greene, 2007). In overdispersed mixture models the Poisson mean is a random 
variable; when it is gamma distributed the model form will be ytj|xtj ~ NB with E(ytj|xtj) = µtj, var(ytj|xtj) = 
µtj+µtj

p; for p equals 1 we obtain the quasi-Poisson distribution above discussed. The choice of the specific 
form of NB depends on data set; NB2 can only accommodate overdispersion and it cannot be used in the case of 
underdispersion. Application of mixture models for crash data are referred by Park and Lord (2009). In NB 
regression the overdispersion parameter  is commonly assumed the same for all entities (intersection and/or 
road segment). Modeling crashes on road sections, Hauer (2001) showed that this assumption may have 
undesirable consequences when road sections in the data base differ in length; if model parameters are estimated 
by maximum likelihood, the relative influence of long road sections is much diminished whereas very short road 
sections exert an unduly large influence. The assumption of an overdispersion parameter constant within the sites 
can also lead to an inconsistency when the safety of a road section by the Empirical Bayes method is estimated 
(Hauer, 2001). In modeling crash-flow relationships for urban intersections, Miaou and Lord (2003) also 
challenged the assumption of fixed dispersion parameter. Because of the complexity and interaction of traffic 
flow in and around intersections, they supposed that the unmodeled heterogeneity of the mean of crash counts 
would be spatially structured. This means that the variance of NB models is not a simple function of mean, but 
contains a dispersion function that depends on site-specific characteristics such as major and minor road traffic 
flows. As well as overdispersion, underdispersion can violate some basic count data modeling assumptions; 
Winkelmann et al. (1995) proposed a correction for an underdispersed event count probability distribution. 
Several researchers recently have proposed new and innovative methods for analyzing under-dispersed crash 
data. Moreover, the Conway-Maxwell-Poisson (COM-Poisson) distribution has been re-introduced by 
statisticians to model count data characterized by either over- or under-dispersion (Shmueli et al., 2005; 
Guikema & Coffelt, 2008; Lord et al., 2010; Zou et al., 2011). The COM-Poisson distribution was first 
introduced in 1962 by Conway and Maxwell; only in 2008 it was evaluated in the context of a GLM by Guikema 
and Coffelt (2008), Lord et al. (2008) and Sellers and Shmueli (2010). The COM-Poisson distribution is a two 
parameter generalization of the Poisson distribution that is flexible enough to describe a wide range of count data 
distributions (Sellers & Shmueli, 2010); since its revival, it has been further developed in several directions and 
applied in multiple fields (Sellers et al., 2011). 

For a random variable Ytj (e.g., a discrete count at year t and at site j) COM-Poisson probability distribution 
function is given by the equation: 

 
y

tjλY = y  =  
(y !) Z  (λ , ν)

tj

tj tj
tj tj

P                                   (1) 

where: 
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tj = a centering parameter, denoting the expected value under a Poisson distribution associated with the generic 
observation at year t and at site j (Sellers and Shmueli, 2010); 

 ( ≥ 0) = the dispersion parameter (where ν < 1 for over-dispersion and ν >1 for under-dispersion). 

This formulation allows for a non-linear decrease in ratios of successive probabilities in the form: 

 Y = y -1
 =

(Y = y )

tj tj tj

tj tj tj

P y

P 




                                   (3) 

Shmueli et al. (2005) refer that the serie λs/(s!)ν converges for any λ > 0 and ν >0, since the ratio of two 
subsequent terms of the serie λ/sν tends to 0 as s→∞. Moments of COM-Poisson distribution can be expressed 
using the recursive formula (Shmueli et al., 2005): 
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Using an asymptotic approximation for Z(λtj ,E(Ytj) can be closely approximated by: 

     tj 1/

tj

 log Z , 1
  

 2tj tj tjE Y 
  

 
 

 
  


                        (5) 

This approximation is especially good for  ≤ 1 or tj > 10. Once the COM-Poisson regression model has been 
estimated, fitted values can be computed by equation 5, setting: 

'
tj
ˆˆ exp  (x β)tj                                     (6) 

2.2 Accounting for Correlation 

Count data often consist of observations over several time periods, these are usually referred to as longitudinal 
data or panel data. A data structure of this kind creates a specific problem in safety modeling because of the 
failure of the independence hypothesis for the variate response. With respect to the precision of the parameters 
estimation, this is a serious issue in safety modeling; that is why elusion of the correlation within responses can 
lead to misleading conclusions in model interpretation on the basis of incorrect estimates of the variances and of 
an inefficient or biased estimate of the regression coefficients (Diggle et al., 2002; Giuffrè et al., 2007). 
Literature refers on several applications by GEE models (see by way of example, Lord & Persaud, 2000; Cafiso 
& D'Agostino, 2012). 

It is well known that a robust model estimation based on Generalized Estimating Equations (GEEs) can still 
supply consistent estimates of the regression parameters even if the correlation matrix is incorrectly specified 
(Fitzmaurice, 1995). Standard application of GEEs to safety analysis uses robust (or sandwich) estimates of 
regression coefficients under an independence hypothesis for the working correlation matrix. Nevertheless it has 
been demonstrated that the efficiency of estimators declines as the correlation increases, and the decline becomes 
appreciable when the correlation is greater than 0.4 (Fitzmaurice, 1995). Furthermore, efficiency losses - when 
independence is a false assumption - will seriously compromise the significance of estimates for within-subject 
correlations greater than 0.5. Errors are particularly large when the correlation is highly positive or highly 
negative. Other researchers think that the search for the right correlation matrix becomes important only when 
marginal models are estimated by using data with missing values (Lord & Persaud, 2000); nevertheless, they 
agree that standard errors of the coefficients usually are underestimated when temporal effects are not included 
in the modeling framework (Hardin & Hilbe, 2003). As above referred, quasi-likelihood methods allow to relax 
Poisson assumption of equidispersion. The GEEs method is an extension of the quasi-likelihood approach (Liang 
& Zeger, 1986); by this method, once a proper distribution has been selected for the data set (e.g., Poisson, 
Quasi-Poisson, Negative Binomial), it is possible to improve the efficiency of parameters estimation specifying a 
“working” correlation matrix, in order to explicitly take into account for the correlation within observations. 
Parameters estimates can be found by solving the following estimating equation: 
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for the year t (t=1, 2, …, m) and for the entity j (j = 1, 2,..., n) 
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where: 

Vtj = covariance matrix at year t and site j 
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β = vector of regression parameters (β1,..., βk) 
µtj = n1 vector (1j, 2j, …, mj) of expected values for the jth site. 

With the usual notation we can put tj = g-1(Xtj ), where g is referred to as the “link” function. The temporal 
correlation in responses is described by means of a mm matrix R(), where  represents the type of correlation 
with  = (1, …, m-1) and j = corr(Ytr j, Yts j) for r, s = 1, …, m-1 and r  s. The covariance matrices can be 
expressed as follows:  

 1/2 1/2
tj tj tj tjV A R A                                    (9) 

 
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m n
2 ' 1

tj tj tj
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 
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 
                             (10) 

where Atj is a diagonal matrix containing the variances of the elements of Ytj, expressed in terms of . The 
simultaneous solution of above equations with the iterative weighted least squares method gives the GEEs 
estimates for  and for the correlation type (). Since it is not possible to know the proper correlation type for 
repeated observations, Liang and Zeger (1986) proposed the use of a “working” correlation matrix by replacing in 
the upper basic equation Vtj with 

tjV̂  based on the correlation matrix 
tjR̂ . 

Then, from the above-mentioned structure of the GEE procedure it has to be highlighted that the specification of 
the form of response correlation represents the central issue in obtaining more efficient estimates. In fact, although 
GEE models are generally robust to misspecification of the correlation structure (Liang & Zeger, 1986), when the 
specified structure does not incorporate all the information on the correlation of measurements within the subjects, 
loss of efficiency in estimates can be expected (Ballinger, 2004). In order to get the true correlation structure, it is 
necessary to test on different hypotheses of within-subject correlation. It is usually possible to choose from 
different types of correlation structures (e.g., independence, exchangeable, unstructured, autoregressive, m-order 
dependence). Assuming the independence structure (i.e. assuming subjects are independent of each other), one has 
to sacrifice the advantage of using GEE (because it does not consider the within-subject correlation); nevertheless, 
the independence structure can still be useful in fitting a base model. The exchangeable structure supposes no 
logical ordering for within-entity observations; when an unstructured working correlation matrix is chosen, 
estimates of all possible correlations of within-entity responses are made and they are included in the estimates of 
the variance. The m-order dependence structure implies that the s take different values at different time points. 
Finally, for data that are correlated within cluster over time, an autoregressive correlation structure can be 
appropriated; in this case correlation within subject is specified as an exponential function of the lag time period 
(Ballinger, 2004).  

In general, decisions about correlation structure should be guided first by theory; there are specific correlation 
structures that are appropriate for time-dependent correlation structures (e.g. autoregressive) and some that are not 
(e.g. exchangeable). For cases in which analyst may be undecided between few structures, Pan (2001) proposed a 
test that extends the Akaike’s Information Criterion to allow comparison of covariance matrices under GEEs 
models to the covariance matrix generated under the independence hypothesis (Quasi-likelihood under the 
Independence model Criterion, QIC). The correlation structure with the QIC score closest to zero is judged to be 
the most appropriate. Applications of QIC in choosing the best correlation structure for a marginal GEEs model, as 
well as some useful general guidelines, are given by Hardin & Hilbe (2003).  

2.3 Model Performance Measures 

Technical literature suggests different goodness-of-fit methods to evaluate predictive performance of models and 
to find the model that best explains the data among all estimated models. The methods used in this paper include 
the following (where the subscript “i” denotes the generic observation at year t and at site j): 

2.3.1 Mean Prediction Bias (MPB) 

MPB gives a measure of the magnitude and direction of the average model bias (Oh et al., 2003). If the MPB is 
positive then the model over-predicts crashes and if the MPB is negative then the model under-predicts crashes. 
It is computed using the following equation: 

1

1
ˆ( )

N

i i
i

MPB y y
N 

                                 (11) 

where N is the sample size, 
iŷ  and yi are the predicted and observed crashes at site i respectively. 
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2.3.2 Mean Absolute Deviance (MAD) 

MAD gives a measure of the average mis-prediction of the model (Oh et al., 2003). The model that provides 
MAD closer to zero is considered to be the best among all the available models. It is computed using the 
following equation: 

1

1
ˆ

N

ii
i

MAD y y
N 

                                   (12) 

2.3.3 Mean Squared Predictive Error (MSPE) 

MSPE is typically used to assess the error associated with a validation or external data set (Oh et al., 2003). The 
model that provides MSPE closer to zero is considered to be the best among all the available models. It can be 
computed using the following equation: 

 
2

1

1
ˆ

N

i i
i

MSPE y y
N 

                              (13) 

2.3.4 Akaike Information Criterion (AIC) 

The AIC (Akaike, 1974) is a measure of the goodness-of-fit of an estimated statistical model and is defined as: 

AIC = −2 log L + 2 p                               (14) 

where: 

L = the maximized value of the likelihood function for the estimated model; 

p = the number of parameters in the statistical model.  

The AIC methodology is used to find the model that best explains the data with a minimum of free parameters, 
penalizing models with a large number of parameters. The model with the lowest AIC is considered to be the best 
model among all available models. The following expressions of log-likelihood were used in order to compute 
AIC: 

Poisson and quasi-Poisson distributions: log L = yi log µi –log (yi!) 

COM-Poisson distribution:  
   n n

i i i 
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Quasilikelihood under the Independence model Criterion (QIC) 

As above referred, since the GEE method is a quasi-likelihood based method, an extension of the Akaike’s 
information criterion is needed to compare covariance matrices under GEE models to the covariance matrix 
generated under the independence hypothesis. So AIC statistic is replaced by the QIC statistic, defined as (Pan, 
2001):  

QIC = -2 Q + 2 p                                   (15) 

where Q is the quasi-likelihood function (Q = L/) and p is the number of parameters in the statistical model. 
The model with the lowest QIC is considered to be the best model among all available models. 

The marginal R2-test 

The marginal R2-test supplies a measure of improvement in fit between the estimated model and the 
intercepted-only one; it compares predicted values from the model (after it is estimated) against the actual values 
(observations) and against the squared deviations of the observations from mean values for the response variable: 
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R2 statistics can be interpreted as the amount of variance in the response variable that is explained by the fitted 
model (Hardin & Hilbe, 2003). 

3. Estimating SPF for Urban Four-Leg Signalized Intersections - A Case Study 

3.1 Data Description 

This section provides an overview of the characteristics of the data set used in this study.  
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The data collected at nineteen urban, four-leg, signalized intersections in the Municipality of Palermo City road 
network included: crash occurred from 2000 to 2007, crash-related maneuvers, infrastructure characteristics and 
traffic volumes; crash data were directly acquired from reports available at the Municipal Police Force; only fatal 
and injury crashes were considered. Note that, since eight years of crash data were considered as distinct 
observations, there were 8 19 = 152 observations. Table 1 shows yearly and 8-year crash statistics (minimum, 
median, mean, maximum), as well as total crashes for the entire dataset. Table 2 reports mean values over 
8-years (2000-2007) of crashes and Annual Average Daily Traffic (AADT) for each site. 

 

Table 1. Annual Crash Statistics, All Collision Types, 2000 - 2007 

Year Minimum Median Mean Maximum Total 

2000 0 3 3.74 13 71 

2001 0 3 3.63 7 69 

2002 0 4 4.21 10 80 

2003 0 3 3.58 8 80 

2004 0 3 3.47 9 66 

2005 1 3 3.42 10 65 

2006 0 3 3.63 9 69 

2007 0 3 3.68 13 70 

2000-07 0 3 3.67 13 558 
Description: Total crashes, yearly and 8-year crash statistics for the entire datase. 

 
Table 2. Mean values of AADTmajor, AADTminor at intersections and crashes 

Intersection (AADTmajor)m [103 veh/d] AADTminor [103 veh/d] (Crashes)m [crash/year] 

1 41.257 8.010 2.25 

2 16.772 9.852 1.75 
3 14.237 10.864 2.13 

4 20.777 19.748 2.88 

5 31.688 15.798 3.00 

6 25.499 13.194 3.50 

7 26.499 15.866 5.00 

8 21.910 21.164 3.38 

9 27.085 24.153 4.50 

10 28.945 27.403 9.75 

11 28.092 10.588 4.88 

12 30.653 7.000 5.50 

13 31.825 17.615 7.38 

14 9.056 6.713 0.50 

15 17.876 12.975 1.38 

16 22.218 13.991 3.00 

17 20.592 9.986 2.50 

18 18.629 16.101 4.75 

19 20.677 10.187 1.75 
Description: 2000-2007 crashes and Annual Average Daily Traffic (AADT) by site. 

 

3.2 Model Selection and Covariates 

It is well known that the development of a Safety Performance Function (SPF) involves: i) which explanatory 
variables should be used; ii) how variables should enter into the model, i.e. the best model form. The results of 
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these tasks can be summarized as follows:  

 all the covariates explored and the significant ones (at the 15% confidence level) are listed in Table 3; 

 different model forms were investigated considering the combinations of all the significant variables listed 
in Table 3. The exploratory analysis suggested to insert into the model only the covariates listed on the right 
column in Table 3; it also revealed that the functional model form could be described using the power 
function for the variables (F1 + F2) and RW2, and the exponential function for the variable PW1. Note that 
the variable F1 was not introduced in the model because it was accounted in variable (F1 + F2); R1 was not 
selected because its introduction in the model together with the other significant variables, either in the 
power or in the exponential form, produced no appreciable benefits on the model performance. Then the 
final selected model had the form: 

  3 11 2
0 1 2 2

j
PW

tj jtj
y F F RW e

                            (17) 

where: 

ytj = expected number of crashes for the year t and the intersection j; 

(F1 + F2)tj = sum of Annual Average Daily Traffic on major- and minor-road for the year t and the intersection j; 

RW2j = minor-road roadway width at the intersection j; 

PW1j = major-road permitted ways at the intersection j (PW1 = 0 for one way only, PW1= 1 for two ways or 
more); 

, 1, 2, 3 = parameters to be estimated. 

 

Table 3. Variables explored and selected 

Variables Abbreviation Significant variables Selected 

Annual Average Daily Traffic on major-road F1   

Annual Average Daily Traffic on minor-road F1 + F2   

Major-road roadway width RW1   

Minor-road roadway width RW2   

Major-road number of lanes NL1   

Minor-road number of lanes NL2   

Major-road red light time R1   

Minor-road red light time R2   

Major-road permitted ways PW1   

Minor-road permitted ways PW2   

Description: Variables represent all the possible covariates; in the third column only variables explored as 
significant are reported. The fourth column includes only the variables selected as coviariates of the model.  

 

3.3 Accounting for Dispersion in GLM Regression  

Generalized Linear Model was performed to estimate model coefficients assuming a Poisson error distribution 
and a quasi-Poisson distribution.  

After model estimation with quasi-Poisson distribution it was observed that data clearly exhibited 
underdispersion ( < 0). Then, to further improve parameters estimates, the COM-Poisson distribution was used.  

For estimating Poisson and quasi-Poisson regression coefficients and standard errors GenStat software was used; 
since GenStat does not provide standard error for dispersion parameter, it was estimated iterating the following 
auxiliary regression (Cameron & Trivedi, 1998): 
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 2
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ˆ
tj tj tj
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tj
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y
 

 
                                 (18) 

where ˆtjy is the fitted value estimated by the Poisson model. Once the dispersion parameter was estimated its 
value was used to obtain new estimates of model parameters; this iteration was performed until all the values 
(i.e., dispersion parameter, coefficients) converged.  

COM-Poisson model was estimated using R software, after implementation of codes arranged by Sellers and 
Shmueli (2010), available at www9.georgetown.edu/faculty/kfs7/research.  

Table 4 shows coefficients estimates, standard errors and goodness-of-fit statistics for the Poisson model (model 
1), the quasi-Poisson model (model 2), the COM-Poisson model (model 3). COM-Poisson coefficients are for 
centering parameter  (see equation 6) and not for mean as in the case of Poisson/quasi-Poisson model (Lord et 
al. 2010; Sellers & Shmueli 2010); this is why COM-Poisson coefficients cannot be directly compared with the 
Poisson/quasi-Poisson ones. 

 

Table 4. Coefficients estimates and goodness-of-fit for the three models 

 Model 1 Model 2 Model 3 

variables est s.e. t est s.e. t est(*) s.e. t 

Constant (0) -6.94 0.77 -9.01 -6.94 0.60 -11.49 -12.41 1.72 -7.22 

F1 + F2 (1) 1.69 0.14 12.15 1.69 0.11 15.49 3.18 0.40 7.75 

RW2 (2) 0.73 0.17 4.23 0.73 0.14 5.40 1.38 0.28 4.79 

PW1 (3) 0.22 0.09 2.38 0.22 0.07 3.04 0.39 0.13 2.96 

 -   -   1.99 0.25  

 -   -0.46 0.06  -   

MPB 0.00   0.00   0.01   

MAD 1.09   1.09   1.09   

MSPE 1.98   1.98   1.97   

AIC 543   543   519   

(*) model parameters to be used for determining 
i̂  according to equation 6. 

Description: Coefficients estimates, standard errors and goodness-of-fit statistics for the three estimated models: 
the Poisson model (model 1), the quasi-Poisson model (model 2), the COM-Poisson model (model 3). 

 

From results showed in Table 4, although there is no difference between parameters estimates (and GOF) for 
Poisson and quasi-Poisson models, it can be seen that the consideration of underdispersion in the data improves 
the estimates accuracy, as it is shown by the reductions in the standard errors values.  

The shape parameter of the COM-Poisson distribution again shows under-dispersion ( > 1). This confirms that 
the Poisson distribution is not appropriate to interpret the data-set. MPB, MAD and MSPE values of the models 
have slight differences, so they do not add any significant information about the models prediction capacity; on 
the contrary, AIC values indicate that the COM-Poisson model has to be considered the best among all estimated 
models. 

3.4 Accounting for Correlation through GEE Regression 

Considering that data consisted of repeated measures over the years that could be correlated within an entity, it 
seemed appropriate to account for the correlation within responses. For this reason GEE regressions were fitted 
under different working correlation matrices, these are assuming that repeated observations were correlated in 
different ways.  

Again GenStat software was used for this purpose. As unfortunately up to now software packages do not allow to 
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perform a GEE model using a COM-Poisson distribution, we used the quasi-Poisson distribution to consider 
simultaneously both the correlation and the under-dispersion in the data.  

As mentioned earlier, three forms of correlation were explored starting from the simplest one (independence 
structure) for which observations are thought (unrealistically) to be uncorrelated. In contrast to the hypothesis of 
independence, an unstructured working correlation matrix was stated to allow the free estimates on the 
within-site correlation from the data. A correlation structure of a stationary 7-dependent process was assumed, 
too. The GEE regression results under the three named working correlation matrices are summarized in Table 5, 
in which both R2

m and the Pan statistic (QIC) are shown. 

 

Table 5. Coefficients estimates and goodness-of-fit in GEEs 

variables 
independence unstructured 7-dependence 

est s.e. t est s.e. t est s.e. t 

Constant () -6.94 0.82 -8.46 -7.63 0.66 -11.56 -7.35 0.63 -11.67 

F1 + F2 (1) 1.69 0.09 18.78 1.78 0.08 22.25 1.77 0.08 23.11 

RW2 (2) 0.73 0.24 3.04 0.87 0.18 4.83 0.79 0.19 4.21 

PW1 (3) 0.22 0.10 2.20 0.31 0.08 3.88 0.29 0.08 3.42 

 -0.47   -0,45   -0.48   

MPB 0.00   1.19   0.27   

MAD 1.09   1.14   1.15   

MSPE 1.98   2.09   2.12   

QIC 1009   1008   1032   

R2
m 0.68   0.66   0.65   

the unstructured working correlation matrix allows a dispersion parameter varying over time in the 
observation period; the mean value is reported in the table. 

Description: GEE regression results under the independence, unstructured and 7-dependence working correlation 
matrices and model performance measures. 
 

The results in Table 5 show that unstructured and 7-dependence working correlation matrices give parameters 
estimates more accurate than under independence hypothesis; that is particularly evident with regard to the 
traffic variable (F1+F2), which most affects the model (i.e. the one with the highest parameter value). 
Nevertheless, the hypothesis of a correlation matrix different from the independent one does not provide any 
significant improvement in QIC and do not allow the best correlation structure to be determined clearly.  

Thus it was decided to thoroughly analyze the model adequacy from another point of view.  

According to the purpose of the current research it was thought that the width of the confidence interval for the 
mean could represent a criterion for model selection, as well as for deciding about the correlation structure of 
response.  

As estimates of GEE parameters (Gare asymptotically normal, it can be derived that an asymptotic (1-)100% 
confidence interval for the mean (x’Gis given by: 

1  
2

x ' 'GEE GEEz x V x


  

Table 6 shows ' GEEx V x values for models estimated under unstructured, dependence and independence 
hypothesis for the working correlation matrix.  

It can be easily seen that relaxing the independence hypothesis, the confidence interval is considerably reduced 
both in the case of unstructured and dependence correlation matrix.  

That confirms benefits in explicitly considering correlation in the data as allowed by a GEE procedure.  
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Table 6. ' GEEx V x sample values for different hypothesis of correlation matrix 

correlation matrix min mean max median 

unstructured 0.042 0.079 0.127 0.077 

dependence 0.043 0.078 0.121 0.079 

independence 0.054 0.093 0.156 0.091 

Description: Above values are related to models estimated under unstructured, dependence and independence 
hypothesis for the three working correlation matrix. 

 
4. Discussion and Conclusion 
Results reported in the previous section highlight that the dispersion and the correlation are phenomena that 
cannot be eluded in the estimation of SPFs under penalty of loss of efficiency in estimating model parameters. 
Generalized Estimating Equations (GEEs) procedure overcomes this problem because it allows to incorporate 
together the dispersion in the data and the temporal correlation. Moreover, GEE regression using different 
working correlation matrices (i.e. assuming that repeated observations are correlated in different ways) allows to 
gain a better understanding of the proper correlation structure in the crash count data. 

The paper presents an application of the GLM and the GEE procedures in developing a SPF; data of the case 
study pertain to a sample of nineteen urban, four-leg, signalized intersections in Palermo, Italy, for the years 
2000-2007. Since data were found to exhibit clear signs of underdispersion together with a quasi-Poisson 
distribution a COM-Poisson was considered in the GLM context; then a GEE quasi-Poisson model was 
performed under three different working correlation matrices. 

Through the case study it was shown that: 

 quasi-Poisson and COM-Poisson GLM regression model allow to handle underdispersion and to obtain more 
accurate estimates for the model parameters than the traditional Poisson model; 

 according to the Akaike Information Criterion, COM-Poisson regression further improves the predictive 
performance of the proposed model and it provides a better goodness-of-fit than the quasi-Poisson model, at 
least for the case study dataset; 

 GEE quasi-Poisson model, especially under working correlation matrices different from the independent one, 
allows more accurate estimates of model parameters than the correspondent GLM model (that do not 
account for the temporal correlation in crashes). 

It has to be noted that regression models based on COM-Poisson distribution, despite their benefits, have 
disadvantages in terms of model estimation due to: 

 difficulties in interpreting the model parameters (  ,  ), in obtaining fitted values and in comparing 
coefficients from a COM-Poisson regression model to those from other models (in fact, the comparison is 
possible only in terms of fitted values); 

 difficulties in arranging COM-Poisson codes, that is actually possible using few statistical softwares just in 
GLM context (for example R software or WinBUGS package); this makes the interest in using 
COM-Poisson regression limited to the research field; 

 difficulties in accounting for temporal correlation in the data since up to now it cannot be used in GEE 
context. 

It follows that the practical utility of COM-Poisson regression may be limited only to the cases of underdispersed 
data. On the contrary, in more frequent cases of overdispersion, Negative-Binomial GEE models allow to obtain 
correct estimates for model parameters accounting simultaneously both for correlation and for dispersion in the 
data. This is handy since many statistical software packages have already implemented GEE functions. 
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