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Abstract  
Using the theory of coincidence degree, the authors have studied the existence of periodic solutions of a type of higher 
order with restoring terms delay functional differential equations with neutral type, and some new results for the 
existence of periodic solutions have been obtained. 
Keywords: Delay functional differential equation, Coincidence degree, Periodic solutions 
1. Introduction and Lemma 
The functional differential equation with time delay, because of its wide application, has long been a main subject of 
common concern. But because the argument in complex time delay may depend on condition itself or variation rate, it is 
difficult to predict the property of the solution to the functional differential equation with complex deviating argument. 
It brings such big difficulty to our research work that in a long period of time the research of this equation progressed 
slowly. In recent years with further development of nonlinear functional analysis and algebra-ictopology, people have 
already had some achievement on the research of this equation. This paper mainly study periodic solutions of the 
following kind: 
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then Eq.(1)has at least one T-periodic solution. 
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Proof of Theorem : In order to use continuation theorem to obtain T-periodic solution of Eq.(1), we firstly make some 
required preparations. Let 1{ −∈= mCxX (R,R) })()( txTtx =+
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Banach space. 
Firstly, we study the priori bound of T-periodic solution of the following equation 
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Combining (1.2),(1.3), we get  
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Noting (1.3), (1.4) and (1.5), we observe 
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corresponding equation of ),( λλ xNLx =  is Eq.(1.1). 

Now, we define projection operators as follows, 
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obviously, P , Q  are continuous operator, =)Im(P R )(Ker L= , )Im()(Ker LQ = ,and it is easy to prove that L is a 
Fredholm mapping of index 0 and N is L−Compact on Ω .
From the above discussion and the construction ofΩ , we have known that 
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so 0),( ≠μxH , i.e. 0),( ≠μxH  is a homotopy, ,deg()0,)(Ker),0,(deg( ILxQN =Ω

0)0,,deg()0,)(Ker ≠Ω=Ω RIL ,where I is identity mapping and the condition (c) of lemma holds. 

From above all, the requirements of lemma are all met, so Eq. ( )has at least one T-per-            iodic solution 
under the condition of theorem 1, so far the proof of theorem is completed. 
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