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Abstract  
In this paper, we give a practical solving method and an expression of general solutions of a system matrix equations 

222111 CXBandACXBA == over an arbitrary skew field by using some matrix techniques and elementary operations 
on matrices. 
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1. Introduction 
It is well known that matrix equation is one of important contents of matrix study. In [1] an expression of general 
solutions of the matrix equation AXB=CYD over an arbitrary skew field was given. In this paper we consider the 
mentioned system matrix equations 222111 CXBandACXBA == over an arbitrary skew field and give an expression of 
general solutions and a practical solving method of the matrix equation by using some matrix techniques and 
elementary operations on matrices with entries from an arbitrary skew field. 

Throughout this paper we denote an arbitrary skew field by F, the set of all m×  n matrixes over F by F nm× , the set of 
all matrices in F nm×  with rank r by nm

rF × , a mm ×  identity matrix by mI , the rank of matrix A by rankA.

Now we introduce the following known lemmas. 

Lemma [ ]21.1  Let nmFA ×∈ . Then rankA=r if and only if there exist mm
mFP ×∈  and nn

nFQ ×∈ such that 

= 00
0rIPAQ

Lemma [ ]32.1  Suppose P and Q be invertible matrices over F. If the multiplication of matrices can be performed, then 
rank A=rank PA=rankAQ=rank PAQ
for any matrix A with entries from F. 

Lemma [ ]43.1  Let rr
rFA ×∈ . Then  

rank += rDC
BA rank )( 1BCAD −−

Lemma [ ]54.1  Let nnFA ×∈ . Then the following conditions are equivalent: 
(i) A is invertible; 
(ii) A is a product of elementary matrices; 
(iii) rank A=n

Lemma [ ]55.1  Let nmFA ×∈ , mE (resp. nE ) be the elementary matrix obtained by performing an elementary row[resp. 

column] operation T on mI (resp. nI ). Then  AEm (resp. nAE ) is the matrix obtained by performing the operation T
on A.
2. Main Results 
Now we consider the matrix equation   
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Where wsstrr =+=+ 2121 , .

Proof  We proof (ii).It follows from Lemma1.1 that there exist kk
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Let [ ]121121 WWQW = , where )(
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11 , sqsss FWFW −×× ∈∈ . It follows from Lemma 1.2 and 1.3 that 
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Theorem 2.2  Let )4,3,2,1(),2,1,(),3,2,1,(,,,,,, 00 === kijij GjiGjiEVVQQUP  be matrices mentioned in theorem 2.1 
and (iii). Then (1) has solution if and only if 

)4,3,2(0,,,,),2,1,( 112211211312311133 ========= iGGEXEXEXEXjiGX iijij )3,2,1(033 === jEE jj
 Whence the 

general solution of (1) is 
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 are all any matrices over F  with corresponding orders. 
Proof  For (1),i.e. for (2), by (iii),(2)is equivalent to the following systems matrix equations 
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(7) i.e. 
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This proof is completed. 
To sum up the above results, we obtain the detailed steps of solving (1): 

(i) Let =
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L , we apply a sequence of elementary row operations on the first l rows of G and apply a 

sequence of elementary column operations on the first k columns of L and obtain the following form 
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Where, Λ is a non-degenerate upper (or lower) triangular matrix. Then, we apply a sequence of elementary row 
operations on the first s rows of 1L  and apply a sequence of elementary column operations on the next q columns of 

1L  again till we obtain the following form 
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, we apply a sequence of elementary row operations on the first m rows of M and apply a sequence 

of elementary column operations of the first ncolumns of M and obtain 
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Where, Ω  is a non-degenerate upper (or lower) triangular matrix. Then, we apply a sequence of elementary column 
operations on the first r columns of 1M  and apply a sequence of elementary row operations on the next p rows of 1M
again till we obtain the following form 
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(iii) By theorem 2.2, we can discuss the all solution circumstances of (1) and obtain an expression of general solutions if 
it has solution. 
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