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Abstract 
The Krylov subspace GMRES (m) method is the programming arithmetic based on the projection method. Now, it has 
become into the excellent arithmetic to solve the linear problem with large scale, and it also can be applied in the 
nonlinear programming problems. In this article, we translate the nonlinear optimization problems into the non-smooth 
equations to solve them. We put forward the iterative method of Newton-GMRES to solve the non-smooth equations, 
and for large-sized problem, this method is especially applied. And the samples also prove the validity of this method. 
Keywords: Non-smooth Equations, Newton-GMRES method 
It is the important task to solve the large-sized nonlinear programming problem in the computation mathematics and the 
scientific engineering computation. The Krylov subspace method is used more in recent twenty years, and it is a sort of 
iterative method based on the projection method which is applied extensively. The common subspace arithmetic 
includes FOM, IOM, GMERS and conjugate gradient method and Lanczos, CG, B iGGSTAB aiming at the symmetric 
array, and some excellent arithmetic have entered into the tool box of MATLAB. In this article, we apply the Krylov 
subspace GMRES arithmetic in the typical Newton’s method, and obtain the Newton-GMRES method which has very 
important function to solve large-sized nonlinear programming problems. 
Many nonlinear programming problems such as nonlinear optimal problems and nonlinear variational inequalities can 
be translated into non-smooth equations to solve. Therefore, the non-smooth equation offers a general frame to solve 
these problems in fact. The solutions of the non-smooth equation are extensively noticed, and one new research hotspot 
in the nonlinear programming domain forms (Hrker et al. 1990, IP et al, 1992, Pang et al, 1990, 1993, Qi et al, 1993a, 
1993b). 
For the solution of the nonlinear equation, 

( ) 0=xp                                 (1.1) 

here, F: nR - nR  is a nonlinear mapping. When F is continual and differentiable, one usual method to solve the 
equations (1.1) is the Newton’s method (Ortega et al, 1970). 
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Many effective methods to solve the equations are related with the Newton’s methods such as Quasi-Newton Methods 
and so on. 
Suppose that F is not a smooth map, but a local map, so ( )xF ′  may not exist, so we can not use the equation (1.2) to 

solve the non-smooth equations (1.1). If ( )kxF∂  is the generalized Jacobi of ( )xF on kx , i.e. 
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′∂ lim , we can use the generalized Jacobi of ( )xF  to replace F (Qi, et al, 1993b), and it can offer a 

sort of generalized Newton Method to solve the non-smooth equations. 

( )kkkk xVxx 1
1

−
+ +=                       (1.3) 

Where, ( )kk xFV ∂∈ . It proves the local super-linear convergence of the generalized Newton Method when ( )xF
is half-smooth. 
In actual application, when we use the equation (1.3) to solve the non-smooth problem, kV  is very difficult to be 



Modern Applied Science                                                               November, 2008

125

estimated especially for large-sized problems. In addition, it is the problem how to effectively solve ( ) 0=+ k
kk xFdV

to deserve us to deeply study. 
For the GMRES arithmetic and other Krylov subspace iterative methods to solve the linear equations, we only need the 
product of the matrix kV  and the vector u, and needn’t directly compute the matrix of kV . Therefore, under the 

non-smooth condition, we can use ( ) ( ) ( )
δ

δ kuk
k

xFxF
uxF

−+
≈′ ,  to approximately replace 

kk dV . Combining with 

the arithmetic (1.3), we can obtain a sort of nested algorithm to solve the equation (1.1). The algorithm can not only 
overcome the difficulty to compute kV , but also effectively solve the equation (1.1). 

Many scholars considered the Krylov subspace iterative method of nonlinear equations (Peter et al, 1987), we they only 
limited the problem in the smooth condition. In this article, we consider the non-smooth condition, which is the 
generalization for the smooth condition. Because the generalized Jacobi is difficult to be estimate, so this 
Newton-GMRES arithmetic is very applicable. 
1. Nonlinear Newton-GMRES method 
Now, we offer a sort of Newton-GMRES iterative arithmetic to solve non-smooth equations. 
Step 1. Supposed that 0>ε , { }kε 0>kε 0→kε .
Select initial approximate nRx ∈0 , k = 0. 

Step 2. Supposed that ( )( ) ( )( ) ( )k
k

k
k xFdxFq 0000 /σσ −+= , and ( )0d  is one approximate solution of the linear 

equations (1.4). ( ) ( ) 0
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Step 3.  j = j + 1
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Define the Hessenberg matrix ( ) jj ×+1 , jh , and its nonzero unit is ijh .

To solve the minimization problem, 
( ) yHe jRy

−
∈ 1

0min β                      (2.1) 

Where, ( )Te 0,,0,11 =  is the unit vector with j+1 dimensions. Note jy  is one solution of the equation (2.1). 
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Compute the residual 
( ) ( ) ( ) ( ) ( )( ) ( )( )k
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Step 4. If 
kj ερ ≤  or j = n, so next, or else turn to Step 3. 

Step 5. Supposed that ( )j
kk dxx +=+1 ,

If ( ) ε≤+1kxF , then end, or else, turn to Step 2. 

Generally, in the computation of value, we take ( )Td 0,,00 = ,

( ) ( ) ( )( ) σσ xFxFuV ux −+=             (2.2) 
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ε  is a value close to the precision of the machine. In the flowing value computation, we take 810−=ε .

2. Examples 
Many actual problems can be translated into non-smooth equations to solve. For the problem of nonlinear 
complementarity problem, seek nRx ∈  to make 

0≥x , ( ) 0≥xH , ( ) 0=xHxT             (2.4) 
and prove the problem is equivalent to the nonlinear equations 

( ) ( )( ) 0,min == xHxxF                   (2.5). 

Example: Seek 0≥x , ( ) 0≥xH , ( ) 0=xHxT ,

where, ( ) ( ) ( ) bxAxcxH ++=
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This question is equivalent to the solution of the following equations. 
( ) ( )( ) 0,min == xHxxF

The appointed stop standard is ( ) 610−≤xF . For the problems with different sizes, its iterative steps are in Table 1, 

where 0x  is the appointed initial value, and nD  is the dimension number of the question. 
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Table 1. The steps of iteration method of different scale problem 

    0x          ( )1,1    ( )0,1,0,1    ( )1,00,1    ( )1,1,00,1,1    ( )0101100,1

50=nD          15        11         9          9              9 

100=nD          8         9         8          8             8 

200=nD         7         9         10         8             10 

500=nD         8        10         9           9              8 




