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Abstract

This paper presents a new method of the flow pattern identification on the basis of the analysis of Power Spectral
Density (PSD) from the pressure difference data of horizontal flow. Seven parameters of PSD curve such as
mean (K1), variance (K2), mean at 1-3 Hz (K3), mean at 3-8 Hz (K4), mean at 8-13 Hz (KS5), mean at 13-25 Hz
(K6) and mean at 25-30 Hz (K7) were used as training vector input of Artificial Neural Networks (ANN) in
order to identify the flow patterns. From the obtained experimental of 123 operating conditions consisting of
stratified flow, plug and slug, ANN was trained by using 100 data operation and 23 tested data. The results
showed that the new method has a capability to identify the flow patterns of gas-liquid two phase flow with a
high accuracy.

Keywords: flow pattern identification, power spectral density (PSD), artificial neural network (ANN), two
phase flow

1. Introduction

The knowledge of two phase flow is of important in engineering process, such as oil industry, chemical process,
power generation, and phase change heat exchanger apparatus. The common characteristics of parameter related
to the flow pattern are the pressure gradient and the void fraction. The main issue in two phase flow researches is
the relationship between the pressure fluctuation and flow pattern. In general, the pressure fluctuations resulted
from the liquid-gas flow and their statistical characteristics are very interest for the objective characterization of
the flow patterns because the required sensors are robust, inexpensive and relatively well established, and
therefore more likely to be implemented in the industrial systems (Drahos et al., 1991).

Drahos et al. (1996) has already conducted the study of the wall pressure fluctuations in a horizontal gas-liquid
flow by using the methodology of chaotic time series analysis in order to obtain a new insight of the dynamics of
the intermittent flow patterns. Next, Franca et al. (1991) presented the fractal techniques for flow pattern
identification and classification. They observed that PSD and PDF could not easily be used for the flow pattern
identification and the objective discrimination between separated and intermittent regimes. Ding et al. (2007)
reported the application of the Hilbert-Huang Transform (HHT) to the dynamic characterization of transportation
of the gas-liquid two-phase flow in a horizontal pipe. Matsui et al. (2007) studied the sensing method of
gas-liquid two phase flow in horizontal pipe on the basis of statistical processing of differential pressure
fluctuation. The flow pattern, the void fraction and the velocity of gas phase were measured by PDF and cross
correlation. From the view point of engineering, the above method’s are subjective in nature, therefore a newly
scientific based method is needed.
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Artificial Neural Network (ANN) provides an alternative method for either modeling phenomena which are too
difficult to model from fundamental principles, or reduce the computational time for predicting expected
behavior. Artificial neural network is based on the important rules for classifying the flow pattern. Neural
network stimulate human mind and demonstrate high intelligence and it can be trained to study the correct output
and classify training exercises. Here, neural network needs knowledge input for training. After the training, the
neural network can classify the similar flow pattern with a high accuracy.

Cai et al. (1994) applied the Kohonen self-organizing neural network in order to identify the flow pattern in a
horizontal air-water flow. In their work, the neural network was trained with stochastic features derived from the
turbulent absolute pressure signals obtained across a range of the flow regimes. The feature map succeeded in
classifying samples into distinctive flow regime classes consistent with the visual flow regime observation. Next,
Wu et al. (2001) recorded the pressure difference signal in pipe flow and used the fractal analysis to analyze
them for identification of flow pattern. By using the ANN, the good result was obtained but it is only considered
stratified, intermittent and annular flows. For this reason, Jia et al. (2005) proposed a new flow pattern
identification method based on PDF and neural network at the horizontal flow in pipe.

Xie et al. (2004) examined the feasibility of the implementation of the artificial neural network (ANN) technique
for the classification of flow regimes in three phase gas/liquid/pulp fiber systems by using the pressure signals as
input. For this purpose, the flow behavior by using the power spectral density function is needed to implement

the parameterization of the information contained in the spectral patterns.

Tablel. The experiment conditions using pressure sensor

Authors System Dlz.imete.r / Measurement technique ~ Method and finding
Orientation

Francaetal. Water-air (wavy, D=19 mm; Pressure drop, Xpp=8D, Using fractal techniques for

(1991) plug, slug and horizontal N=5 000 flow pattern identification
annular) and classification.

Cai et al. Water-air D= 50 mm; Two absolute pressure, Kohonen self-organizing

(1994) (stratified, slug, horizontal Xpp=1D, SR=40Hz, neural network to identify
intermittent N=40 000 flow regimes.
transition, and
bubble)

Drahos et al. Water-air (plug D=50 mm; wall pressure Chaotic time series analysis

(1996) and slug) horizontal fluctuations, Xpp=8D, to obtain a new insight into

SR=500Hz, N=60 000 the dynamics of the
intermittent flow pattern.

Wu et al. Oil-gas-water, D= 40 mm; Differential pressure, The fractal analysis to

(2001) (stratified, horizontal Xpp=5D, analyze the signal for
intermittent and identification of flow
annular) pattern.

Jia et al. Water-air D=32 mm; Differential pressure, Flow pattern identification

(2005) (stratified, churn,  horizontal Xpp=10D, SR=200Hz, method based on PDF and
slug, annular) N=6 000 neural network.

Matsui et al.  Water and D=7 mm; Differential pressure, The flow pattern, the void

(2007) nitrogen gas horizontal Xpp=1D, Xpp=7D fraction and the velocity of
(small bubble SR=100Hz, N=2 000 gas phase were measured by
train, plug and PDF and cross correlation.
slug)

Hao et al. Water-air, (wavy, D=15mm, 25 Differential pressure, The application of the

(2007) bubble, plug and  mm, 40 mm; Xpp=250mm, Hilbert-Huang Transform
slug) horizontal SR=200Hz, N=30 000 (HHT) to identify flow

regimes.
Xie et al. Gas-liquid-pulp D= 50.8mm, Local pressure To characterize the
(2004) fiber (churn, vertical fluctuations, SR=200Hz,  hydrodynamics of the flow

slug)

N=2 000

based on the power spectral
density function.
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The summary of experiment conditions from the previous researcher is shown in Table 1, where Xpp is distance
of pressure tap (mm), SR is sampling rate and N is size of data. It gave the information about the method of flow
pattern identification, distance of pressure tap, sampling rate, size of data and flow pattern identified. Those
studies have contributed to our understanding of flow patterns of two-phase flows and losing the subjective
judgment of researchers in flow pattern identification. In this paper, the differential pressure, the analysis of PSD
and back propagation neural network was used to identify flow pattern of two phase flow at a horizontal pipe.
An ANN was designed, trained and tested for the classification of the flow regimes using as input some density
characteristics of the power spectrum for one of the normalized differential pressure signals and was shown to
predict the flow regimes with good accuracy.

2. Experiments Apparatus and Procedure

Figure 1 shows a schematic diagram of the experimental apparatus used in the present study. Air supplied from a
compressor and water from pump into an air-water mixing section after their flow rates are measured
individually by flow meters. The air-water mixture flows through the tube into an air-water separator, where air
is released into the atmosphere and water is measured more accurately by weighing if necessary. A smooth tube
of 24 mm inner diameter and of 9 m total length is made of transparent acrylic resin to observe the flow pattern.

9000

T 3|.__4000

ITEST SECTION |4
L FLOW

X DPT

OF2 e .
X A/D&C

Tube diameter: 24 mm

P: Pressure gauge 1. Pump

F: Flow meter 2. Compressor

T: Thermometer 3. Air-water mixing section
K: Valve 4. Separator

PR: Pressure regulator 5. Liquid tank
SC: Signal conditioning
DPT: Differential pressure
transducer
A/D&C: Analog to Digital
and Computer

Figure 1. Schematic diagram of the experimental apparatus

As shown in the Figure 1, the pressure fluctuation was detected by Validyne DP15-32 differential pressure
transducer with 5D distance of pressure tap. The transducer has = 0.25% full scale accuracy. Output signals from
transducer were sent through amplifier into a computer via A/D converter. Sampling rate was 400 Hz and the
measuring time of experimental run was 50 s. The working fluids were air and water. The experiment conditions
are as follows: the range of superficial air and water velocities; Jc=0.085-3.204 m/s, and those J;= 0.016-1.255
m/s.

3. Results and Discussions
3.1 Flow Patterns
Figure 2 shows the typical results of the flow patterns obtained from the present experiment. The Figures, (a), (b)

and (c) correspond to interfacial behavior of the stratified, plug and slug flows, respectively. In the stratified flow,
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the gas phase travels along the upper half of the tube while the liquid flows along the bottom with no significant
interfacial waves. As shown in Figure 2(a), this flow has the simplest configuration of all the horizontal flow
patterns. The stratified flow pattern occurs at relatively low gas and liquid mass flow rates and density difference
of fluid. As shown in the Figure 2(b) the plug flow is characterized by elongated bubbles flowing along the top
of the tube in a continuous liquid flow. Next, it is noticed that in the plug flow; elongated bubbles move at the
same velocity with the liquid, and the gas-liquid interface below the bubbles is relatively stable, indicating a
small difference between the velocities of the phases at the interface. With the increase gas velocity, the
magnitude of the waves increases. This condition is called slug flow. Ultimately, the waves build up and reach
the upper wall of the tube to form some liquid packets, also liquid slugs. These liquid slugs are then transported
at the higher velocity of the gas (Figure 2(c)). Unlike plug flow, in which the elongated bubbles of gas are
transported by the liquid phase, in slug flow the liquid slugs are carried by the faster moving gas flow. The slug
flow pattern is highly undesirable in practical applications. The faster moving liquid slugs are usually associated
with sudden pressure pulses and severe pressure oscillations that can cause damage to downstream equipment.

Interface between

gas flow and : ’ Interface between i y
. liquid flow ) Elongate: as flow and “longate
Liquid flow Gas flow gas bubble .Elgngated gliquid flow gas bubble
\ \ \ / liquid bubble \
\w' S E N m\ Al
— . — v
JG = 0417 m/s; J, = 0,023 m/s T\‘a : Jo=0348 m/s.J, = 0418 m/s  Nose
E : : h“--
J;=0417 m/s; J;,. = 0,046 m/s J;=0,348 m/s;J;, = 0,837 m/s
Flow direction  JG=0.417 m/s; J;, =0,070 m/s Flow direction J=0348m/s; J; = 1,255 m/s
_— _—
(a) Stratified flow (b) Plug Flow
Gas bubble
Elongated in elongated “longicl
liquid bubble liquid bubble gas bubble

Flow direction Ji=1,669 m/s; J;, = 1,255 m/s
—_—

(c) Slug Flow

Figure 2. Typical results of the observed flow patterns

Finally, the obtained flow pattern data is compared with the horizontal flow pattern map proposed by Mandhane
et al. (1974) as shown in Figure 3. Close observation of this figure reveal that the obtained flow pattern data are
in agreement with those of Mandhane et al. (1974).
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Figure 3. Flow patterns map

Figure 4 shows the structure of the intelligent identification system used in present study. As shown in Figure 4,
the system of flow pattern identification is composed of differential pressure measuring unit, data acquisition
unit and data processing unit. Differential pressure measuring unit and data acquisition unit constitute the
hardware part of the system, while data processing unit constitutes the software part of the system.

The known HARDWARLE SOFTWARE
flow pattern 1T TTTTTTTTTTTITA IO
in flow ! o "
—— 1y Pressure | Data (| Signal  » Quantifying PSD
i different acquisition |1 E processing (Characteristic
————p Measuming unit b (PSD) P Parameter)
The unknown unit

flow pattern in
flow e memmccmccmce————————————— '

Automatic
identification of
flow pattern
using ANN

—

The type of flow pattern

Figure 4. Structure of the intelligent identification system

Here, the normalized pressure fluctuations in the time series is defined below:

DP' =(DP-DP)/\(DP-DPy’ (1)

Where DP is differential pressure (Pa), DP is average differential pressure (Pa) and DP* is normalized
pressure different signal (Pa). The power spectrum was estimated using the segments with a length of 16 834
points and a Hanning Window of the same size.

3.2 Typical Flow pattern and Power Spectral Density

In this paper, three typical flow patterns ware identified. The characteristics of their PSD were used to identify
the different of the flow patterns. Examples of time series pressure different and power spectra for the major
flow patterns are shown in Figure 5 to Figure 7.

3.2.1 Stratified Flow
Time series signal and PSD of stratified flow is shown at Figure 5, in which it shows a low mean pressure
difference with a small fluctuation. This flow pattern occurs at low superficial velocities of water and air and the

interface between water flow and air flow is clear (no bubble). From Figure 5(b), it is revealed that the stratified
flow has one peak and spreads over wide frequency range from 8 to 27 Hz.
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Figure 5. Typical of the time variation of pressure gradient and the PSD in stratified flow at J;=0.023 m/s and
J5=0.255 m/s

3.2.2 Plug Flow

Figure 6 shows the time variation of pressure gradient and the PSD of plug flow. The time variation the pressure
difference of plug flow has a bigger fluctuation than that of stratified flow as shown in Figure 6(a). It is possible
due to the air bubble has a compressible effect that cause large fluctuations. The spread values of PSD are
divided into two parts. There are in the range of 0-11 Hz and 11-27 Hz (see Figure 6(b)).
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(a) Time series signal (b) Power spectral density
Figure 6. Typical of the time variation of pressure gradient and the PSD in plug flow at J;=0.697 m/s and
J5=0.438 m/s

3.2.3 Slug Flow

Figure 7 shows the time series signal and the PSD slug flow. Slug flow time series signal has a different pattern
when compared with the stratified flow and plug flow, as shown in Figure 7(a). Slug flow time series signal have
peaks value that it is caused by the high water velocity pushing the elongated bubbles. Among the top value
range present the bubbles flow with zero value. PSD of slug flow has the frequency range in 2-35 Hz with spread
of peak value decreases (see Figure 7(b)).
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Figure 7. Typical of time series signal pressure gradient and PSD in slug flow at J;=1.255 m/s and Jg=2.315 m/s

3.3 Flow Pattern Identification Using Back Propagation Neural Networks
3.3.1 Characteristic Parameters of PSD

Based on the recorded power spectra, this works focus on a frequency range up to 30 Hz. The frequency range
over 0-30 Hz is then divided into five bandwidths: 0-3, 3-8, 8-13, 13-25, and 25-30 Hz as performed by Xie
(2005). The mean value of power in each of the aforementioned bands, denoted as mean 0-30 (K1), variance
0-30 (K2), mean 0-3 Hz (K3), mean 3-8 Hz (K4), mean 8-13 Hz (K5), mean 13-25 Hz (K6), and mean 25-30 Hz
(K7) use as input of neural network training.
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Figure 8. Characteristic parameters of a PSD

62



www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9;2012

Mean (K1)

Variance (K2)
Mean 0-3 Hz (K3)
Mean 3-8 Hz (K4 Slug (1 0 0)
Mean 8-13 (K5) SERA Plug (0 1 0)

Mean 13-25 (KE) \ Stratified (0 0 1)

Output Layer

Hidden Layer

Input Layer

Figure 9. Back propagation neural network architecture is used in this research

Table 2 shows part of characteristic parameters with seven parameter characteristics of PSD for difference
operating condition. Those parameters and the output of the flow patterns (stratified flow, plug flow and slug
flow) were used to train the back propagation ANN.

Table 2. Examples of the vector characteristic obtained from the present study

No.Run J_(mls) Jg(mls) K1 K2 K3 K4 K5 K6 K7 p;'t:‘r':‘s
1 0.02 0.08 0.0083 _ 0.0005  0.0023 _ 0.0016 _ 0.0069 _ 0.0159 _ 0.0029 Stratified
2 0.70 0.52 00159 00014  0.0648  0.0434 00106 00023 00002  Plug
3 0.14 0.08 00143 00039  0.1327 0.0044 0.0012 00012 00003  Plug
4 0.28 0.82 00159 00193  0.1408  0.0088  0.0048 00002 00001  Slug
5 0.02 0.17 0.0084 00004  0.0023 0.0017 0.0071 00159  0.0033 Stratified
96 0.05 0.51 00110 00012  0.0130  0.0011  0.0063 0.0203 0.0038 Stratified
97 1.26 0.27 0.0148 00004  0.0032 0.0262 0.0220 00168 00013  Plug
98 0.56 0.34 00159 00019  0.0658  0.0366  0.0083  0.0058  0.0002  Plug
99 0.84 1.34 00159 00038  0.1095 0.0255  0.0057 0.0006 00001  Slug

100 0.05 0.82 0.0125  0.0012  0.0160  0.0017  0.0092  0.0189  0.0098 Stratified

3.3.2 Identifying Flow Pattern Using ANN

Neural networks with a single layer have a limitation in pattern recognition. This drawback can be overcome by
adding one or more/multiple hidden layers between input and output layers. Back propagation neural network
train the network to get a balance the network's ability to recognize patterns that will be used during training. It
also get networking capabilities to provide the correct response (with the input pattern is similar patterns used
during training (but not equal)). The use of more than one hidden layers have advantages for some cases, but
generally it was begun by trying with one hidden layer.

Back propagation neural network architecture used in the present study is shown in Figure 9. It has one input
layer and one hidden layer. The input layer consists of seven neural cells, corresponding to the seven
components of the input vectors. The hidden layer consists of three neural cells. The output layer consists of
three neural cells, and corresponds to the three different flow patterns of water-air two phase flows in horizontal
pipe (stratified flow, plug flow and slug flow). In this paper, let the expected output vector of stratified flow be
(0, 0, 1), that of plug flow be (0, 1, 0), and that of slug flow be (1, 0, 0).
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Table 3. Part of test examples and identification results

Identification
K1 K2 K3 K4 K5 K6 K7 Flow Patterns results of ANN
0.0097 0.0011 0.0030 0.0017 0.0074 0.0191 0.0027 Stratified Stratified
0.0171 0.0009 0.0163 0.0463 0.0080 0.0172 0.0006 Plug Plug
0.0155 0.0034 0.1014 0.0298 0.0048 0.0003 0.0001 Slug Slug
0.0087 0.0005 0.0039 0.0018 0.0087 0.0150 0.0041 Stratified Stratified
0.0159 0.0010 0.0232 0.0504 0.0092 0.0102 0.0003 Plug Plug
0.0161 0.0028 0.1083 0.0265 0.0064 0.0006 0.0002 Slug Plug*
0.0133 0.0016 0.0041 0.0009 0.0068 0.0268 0.0068 Stratified Stratified
0.0167 0.0011 0.0295 0.0467 0.0081 0.0130 0.0002 Plug Plug
0.0178 0.0063 0.1399 0.0190 0.0059 0.0006 0.0003 Slug Slug

One hundred operating conditions of experiment are selected as training models to train the network and 23
operating conditions are selected as test samples. Table 3 and Table 4 show the result of identification, in which
the identification ability of the neural network is very good.

Table 4. Result of identification use Back Propagation Artificial Neural Networks

Stratified flow Plug flow Slug flow
Number of flow pattern 5 9 9
Number of correct identification 5 9 8
Accuracy of identification rating 100% 100% 98%

4. Conclusion

This paper uses a differential pressure transducer to measure the differential pressure of two phase flow and
through neural network intelligently identifies the flow pattern. Statistical analysis of PSD was used to quantify
the characteristics of the differential pressure signals at different flow conditions. Results showed that the
method has the merits such as easy computation and easily quantifying the characteristics of the measured
signals. This method has a advantage method for the industrial application such as high accuracy, fast and
without artificial intervention.

Nomenclature

ANN = artificial neural network

DP = differential pressure (Pa)

DP = average differential pressure (Pa)

DP* = normalized pressure different signal (Pa)
J. = water superficial velocity (m/s)

Jg = air superficial velocity (m/s)

PSD = Power spectral density
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Appendix
The PSD Theory

The goal of spectral analysis is to describe the distribution of the power contained in a signal over a frequency,
based on a finite set of data. It converts information available in the time-domain into the frequency-domain. The
averaged modified periodogram method was adopted to diminish the distortion of the spectrum due to a finite
length of data record. If x(n) (=0, 1, ... , N—1) is only measured over a finite interval, the power spectral density
may be computed using the periodogram method:

Px(f) = iﬁx(k)e"z’”‘f /55 ()
fr=—c0

Where: N is finite length of a discrete time signal, & is discrete time shift, f is frequency,fs is the sampling
frequency and the autocorrelation is given as

. | Nolok 3
Rx(k)y=— > x(n+k)x(n) 3)
N n=—N
The Statistical Theory

The statistical analysis methods mentioned clustered PSD data are mean and variance. These features are used as
inputs to the neural network.

The mean is given by,
=3, @)

The variance is given as,

o= S (- ) ®

The Back Propagation ANN
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These networks usually contain three types of layers:

1. An input layer

2. A hidden layer sigmoid bipolar and

3. An output layer linear transfer/ramp

Training process:

Step 1. Design the structure of neural network and input parameters of the network
Step 2. Get initial weights W and initial 6 values from randomizing.

Step 3. Input training data matrix X and output matrix T.

Step 4. Compute the output vector of each neural unit.

(a) Compute the output vector H of the hidden layer
net; = ZVVikXi_ek

H =f ("etk )
(b) Compute the output vector Y of the output layer

net; = Z WH, -0,

Y, =f(netj)

Step 5. Compute the distances &
(a) Compute the distances d of the output layer

9, = (Tj _Yj)°f'("etj)

(b) Compute the distances & of the hidden layer

5, = (;é‘jij o '(net, )J

Step 6. Compute the modification of W and 6 (n is the learning rate)
(a) Compute the modification of W and 6 of the output layer

AW, =nd.H,
AG, =-nd,;

J

(b) Compute the modification of W and 0 of the hidden layer
AW, =n6, X,

AG, =-nd,

Step 7. Renew W and 6
(a) Renew W and 6 of the output layer

W, =W, +AW,

0,=0,+A0,

(b) Renew W and 0 of the hidden layer
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(10)

(11

(12)
(13)

(14)
15

(16)

(17)
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Wy=W,+AW, (18)
6, =0,+A6, (19)

Step 8. Repeat step 3 to step7 until convergence.

Testing process:

Step 1. Input the parameters of the network.

Step 2. Input the W and 6

Step 3. Input an unknown data matrix X

Step 4. Compute the output vector

(a) Compute the output vector H of hidden layer

net, = ZWikXi—ek (20)
H, =f(netk) (21)
(b) Compute the output vector Y of the output layer
net, =y W,H, -0, (22)
Y, = flnet,) (23)
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