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Abstract 
This paper presents a new method of the flow pattern identification on the basis of the analysis of Power Spectral 
Density (PSD) from the pressure difference data of horizontal flow. Seven parameters of PSD curve such as 
mean (K1), variance (K2), mean at 1-3 Hz (K3), mean at 3-8 Hz (K4), mean at 8-13 Hz (K5), mean at 13-25 Hz 
(K6) and mean at 25-30 Hz (K7) were used as training vector input of Artificial Neural Networks (ANN) in 
order to identify the flow patterns. From the obtained experimental of 123 operating conditions consisting of 
stratified flow, plug and slug, ANN was trained by using 100 data operation and 23 tested data. The results 
showed that the new method has a capability to identify the flow patterns of gas-liquid two phase flow with a 
high accuracy. 

Keywords: flow pattern identification, power spectral density (PSD), artificial neural network (ANN), two 
phase flow 

1. Introduction 
The knowledge of two phase flow is of important in engineering process, such as oil industry, chemical process, 
power generation, and phase change heat exchanger apparatus. The common characteristics of parameter related 
to the flow pattern are the pressure gradient and the void fraction. The main issue in two phase flow researches is 
the relationship between the pressure fluctuation and flow pattern. In general, the pressure fluctuations resulted 
from the liquid-gas flow and their statistical characteristics are very interest for the objective characterization of 
the flow patterns because the required sensors are robust, inexpensive and relatively well established, and 
therefore more likely to be implemented in the industrial systems (Drahos et al., 1991). 

Drahos et al. (1996) has already conducted the study of the wall pressure fluctuations in a horizontal gas-liquid 
flow by using the methodology of chaotic time series analysis in order to obtain a new insight of the dynamics of 
the intermittent flow patterns. Next, Franca et al. (1991) presented the fractal techniques for flow pattern 
identification and classification. They observed that PSD and PDF could not easily be used for the flow pattern 
identification and the objective discrimination between separated and intermittent regimes. Ding et al. (2007) 
reported the application of the Hilbert-Huang Transform (HHT) to the dynamic characterization of transportation 
of the gas-liquid two-phase flow in a horizontal pipe. Matsui et al. (2007) studied the sensing method of 
gas-liquid two phase flow in horizontal pipe on the basis of statistical processing of differential pressure 
fluctuation. The flow pattern, the void fraction and the velocity of gas phase were measured by PDF and cross 
correlation. From the view point of engineering, the above method’s are subjective in nature, therefore a newly 
scientific based method is needed. 
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Artificial Neural Network (ANN) provides an alternative method for either modeling phenomena which are too 
difficult to model from fundamental principles, or reduce the computational time for predicting expected 
behavior. Artificial neural network is based on the important rules for classifying the flow pattern. Neural 
network stimulate human mind and demonstrate high intelligence and it can be trained to study the correct output 
and classify training exercises. Here, neural network needs knowledge input for training. After the training, the 
neural network can classify the similar flow pattern with a high accuracy.  

Cai et al. (1994) applied the Kohonen self-organizing neural network in order to identify the flow pattern in a 
horizontal air-water flow. In their work, the neural network was trained with stochastic features derived from the 
turbulent absolute pressure signals obtained across a range of the flow regimes. The feature map succeeded in 
classifying samples into distinctive flow regime classes consistent with the visual flow regime observation. Next, 
Wu et al. (2001) recorded the pressure difference signal in pipe flow and used the fractal analysis to analyze 
them for identification of flow pattern. By using the ANN, the good result was obtained but it is only considered 
stratified, intermittent and annular flows. For this reason, Jia et al. (2005) proposed a new flow pattern 
identification method based on PDF and neural network at the horizontal flow in pipe.  

Xie et al. (2004) examined the feasibility of the implementation of the artificial neural network (ANN) technique 
for the classification of flow regimes in three phase gas/liquid/pulp fiber systems by using the pressure signals as 
input. For this purpose, the flow behavior by using the power spectral density function is needed to implement 
the parameterization of the information contained in the spectral patterns. 

 

Table1. The experiment conditions using pressure sensor 

Authors System 
Diameter/ 
Orientation 

Measurement technique Method and finding 

Franca et al. 
(1991) 

Water-air (wavy, 
plug, slug and 
annular) 

D=19 mm; 
horizontal 

Pressure drop, XDP=8D, 
N=5 000 

Using fractal techniques for 
flow pattern identification 
and classification. 

Cai et al. 
(1994) 

Water-air 
(stratified, slug, 
intermittent 
transition, and 
bubble) 

D= 50 mm; 
horizontal 

Two absolute pressure, 
XDP=1D, SR=40Hz, 
N=40 000 

Kohonen self-organizing 
neural network to identify 
flow regimes. 

Drahos et al. 
(1996) 

Water-air (plug 
and slug) 

D=50 mm; 
horizontal 

wall pressure 
fluctuations, XDP=8D, 
SR=500Hz, N=60 000 

Chaotic time series analysis 
to obtain a new insight into 
the dynamics of the 
intermittent flow pattern. 

Wu et al. 
(2001) 

Oil-gas-water, 
(stratified, 
intermittent and 
annular) 

D= 40 mm; 
horizontal 

Differential pressure, 
XDP=5D,  

The fractal analysis to 
analyze the signal for 
identification of flow 
pattern. 

Jia et al. 
(2005) 

Water-air 
(stratified, churn, 
slug, annular) 

D= 32 mm; 
horizontal 

Differential pressure, 
XDP=10D, SR=200Hz, 
N=6 000 

Flow pattern identification 
method based on PDF and 
neural network. 

Matsui et al. 
(2007) 

Water and 
nitrogen gas 
(small bubble 
train, plug and 
slug) 

D= 7 mm; 
horizontal 

Differential pressure, 
XDP=1D,  XDP=7D 
SR=100Hz, N=2 000 

The flow pattern, the void 
fraction and the velocity of 
gas phase were measured by 
PDF and cross correlation. 

Hao et al. 
(2007) 

Water-air, (wavy, 
bubble, plug and 
slug) 

D=15 mm, 25 
mm, 40 mm; 
horizontal 

Differential pressure, 
XDP=250mm, 
SR=200Hz, N=30 000 

The application of the 
Hilbert–Huang Transform 
(HHT) to identify flow 
regimes. 

Xie et al. 
(2004) 

Gas-liquid-pulp 
fiber (churn, 
slug) 

D= 50.8mm, 
vertical 

Local pressure 
fluctuations, SR=200Hz, 
N=2 000 

To characterize the 
hydrodynamics of the flow 
based on the power spectral 
density function. 
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Appendix 
The PSD Theory 

The goal of spectral analysis is to describe the distribution of the power contained in a signal over a frequency, 
based on a finite set of data. It converts information available in the time-domain into the frequency-domain. The 
averaged modified periodogram method was adopted to diminish the distortion of the spectrum due to a finite 
length of data record. If x(n) (n=0, 1, ... , N−1) is only measured over a finite interval, the power spectral density 
may be computed using the periodogram method: 
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Where: N is finite length of a discrete time signal, k is discrete time shift, f is frequency,fs is the sampling 
frequency and the autocorrelation is given as 
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The Statistical Theory 

The statistical analysis methods mentioned clustered PSD data are mean and variance. These features are used as 
inputs to the neural network.  

The mean is given by, 
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The variance is given as, 
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The Back Propagation ANN 
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These networks usually contain three types of layers: 

1. An input layer 

2. A hidden layer sigmoid bipolar and 

3. An output layer linear transfer/ramp 

Training process: 

Step 1. Design the structure of neural network and input parameters of the network  

Step 2. Get initial weights W and initial θ values from randomizing. 

Step 3. Input training data matrix X and output matrix T. 

Step 4. Compute the output vector of each neural unit. 

(a) Compute the output vector H of the hidden layer 

  kiikk XWnet 
                                      

(6) 

 kk netfH                                            
(7) 

(b) Compute the output vector Y of the output layer 

  jikjj HWnet 
                                      

(8) 

 jj netfY 
                                          

(9) 

Step 5. Compute the distances  

(a) Compute the distances d of the output layer 

   jjjj netfYT '
                                   

(10) 

(b) Compute the distances  of the hidden layer 

 







 

j
kkjjk netfW '

                                 

(11) 

Step 6. Compute the modification of W and θ (η is the learning rate) 

(a) Compute the modification of W and θ of the output layer 

kjkj HW 
                                      

(12) 

jj  
                                        

(13) 

(b) Compute the modification of W and θ of the hidden layer 

ikik XW                                        
(14) 

kk                                          
(15) 

Step 7. Renew W and θ 

(a) Renew W and θ of the output layer 

kjkjkj WWW 
                                   

(16) 

jjj  
                                     

(17) 

 

(b) Renew W and θ of the hidden layer 
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ikikik WWW                                     
(18) 

kkk                                        
(19) 

Step 8. Repeat step 3 to step7 until convergence. 

Testing process: 

Step 1. Input the parameters of the network. 

Step 2. Input the W and θ 

Step 3. Input an unknown data matrix X 

Step 4. Compute the output vector 

(a) Compute the output vector H of hidden layer 

  kiikk XWnet 
                               

(20) 

 kk netfH                                      
(21) 

(b) Compute the output vector Y of the output layer 

  jikjj HWnet 
                               

(22) 

 jj netfY 
                                   

(23) 

 
 

 

 

 

 


