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Abstract 

Several recent studies have shown the efficacy of unconstrained binary quadratic programming (UBQP) to 
model and solve many combinatorial problems. In this paper we are interested in the minimum sum coloring 
problem (MSCP), a new variant of the traditional graph coloring problem (GCP). We give a reformulation of the 
problem (MSCP) as an unconstrained binary quadratic binary programming, and we resolve it afterward by a 
genetic algorithms. The proposed algorithm is evaluated on the DIMACS challenge benchmarks and 
computational results show that the proposed UBQP model achieves highly competitive results, compared with 4 
state-of-the-art algorithms. 
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1. Introduction 

The graph coloring problem (GCP) is an NP-hard problem (Garey et al., 1979), it requires to assign a color to 
each vertex in such a way that colors on adjacent vertices are different and the number of used colors is 
minimized. For an undirected graph G = (V,E), the chromatic number of a graph G is the smallest number of 
used colors for coloring all vertices of G, we denote it χ(G). The (GCP) problem has many applications such as 
the timetabling problem (de Werra, 1985), scheduling problem (Zufferey et al., 2008), and communication 
networks (Woo et al., 2002). In this paper we focus on the minimum sum coloring problem (MSCP), which is 
derived of the graph coloring one. Its principle is to minimize the total sum of colors assigned to all vertices of 
the graph. It was introduced first by Kubicka in 1987, and since, several theoretical works and algorithmics were 
realized among them we cite the work of (Kokosinski et al., 2007) using a parallel genetic algorithm based on 
GPX and CEX crossover with a number of iterations from 5000 to 10000. In 2010, a lower bound for MSCP has 
been presented by studying several approaches based on the extraction of partial graphs (Moukrim et al., 2010), 
for it they gave a coloring for the complementary graph using a greedy algorithm MRLF that has complexity 
o(n3) (Li et al., 2009). Douiri et al. presented upper bounds by a genetic algorithm and a local heuristic (DBG) 
(Douiri et al., 2011a; 2011b), they also proposed a new ant colony optimization algorithm for the lower bound of 
sum coloring problem (Douiri et al., 2012). Wu et al. proposed a heuristic algorithm based on independent set 
extraction called EXSCOL (Wu et al., 2012). 

Objective function of the unconstrained binary quadratic programming problem is to maximize (or minimize) the 
function: 

f(x)=xTQx                                        (1) 

where Q = (ݍ) is an nxn matrix of constants and x is an n-vector of binary variables, the great importance and 
the ability to model a wide of different problems on many areas as traffic management (Gallo et al., 1980), 
machine scheduling (Alidaee et al., 1994). UBQP gives evidence to its relevance and effectiveness in the face of 
known problems by their complexity such as the set packing problem (Alidaee et al., 2008), the vertex coloring 
problem (Kochenberger et al., 2005), and the linear ordering problem (Lewis et al., 2009). Given its NP-hard 
nature (Garey et al., 1979), various approaches have been proposed for solving this model using exact methods 
(Pardalos et al., 1990), and metaheuristic methods as memetic algorithms (Merz et al., 2004), scatter search 
(Amini et al., 1999), adaptive memory TS algorithms (Glover et al., 1998). In this paper we propose to transform 
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MSCP problem as an unconstrained binary quadratic programming (UBQP) and we solve it by a genetic 
algorithm. 

In Part 2 we present some definitions and properties of (MSCP) in the third part we develop our model of 
(MSCP) in quadratic form. In the fourth section we describe our approach by a genetic algorithm, and we give 
numerical tests, and a conclusion.  
2. Minimum Sum Coloring Problem 

We consider an undirected graph G = (V,E) where V is the set of vertices and E denotes the set of edges. The sum 

coloring problem was introduced by (Kubicka et al., 1989) who demonstrated its NP-completeness. This 

problem aims to find a valid coloring of all vertices of a given graph so that the total sum of colors is minimal. 

This minimum sum is called chromatic sum and denoted   ( )c
v V

G  min c v


  , where c(v) is the color 

associated to the vertex v. The smallest number of colors required in an optimal solution for (MSCP) is called the 

strength of the graph, and denoted s(G). For any graph G = (V,E), we recall some bounds of the chromatic sum: 

         /card V s G s G 1 2  G                               (2) 

         /card V G G 1 2  G                                (3) 

.ඥ8ڿ               Σ(G)                                 (4) ≥	ۀሻܧሺ݀ݎܽܿ               

 

 

Figure 1. Two valid colorings with different sum coloring value 

 

3. Quadratic Transformation 

The minimum sum coloring problem (MSCP) can be expressed in a form of a linear problem with binary 
variables as follows: 
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    2
i i ix x since x binary                                  (5) 

Each vertex must be colored we obtain:   

, , , �
k

ip
p 1

x 1 i 1 n


    

Two adjacent vertices have different colors are expressed as: 

ip jpx x 1   

The problem (ܫ ெܲௌ) is constituted of a linear objective function with two types of constraints. The first one 
under shape equality ܣ ∗  b, where A is a matrix of dimension n ×(n×k), where n is the number of vertices = ݔ
and k the number of used colors. The second type of constraints is ݔ+ݔ  1. The number of these inequality 
constraints is card(E) × k. Our purpose is to reformulate the problem (IP) in a binary quadratic problem without 
constraints in the form: 

 
 

T
0

MSCP

minx x Qx
UBQP

xbinary

 



 

where Q is a square symmetric matrix of dimension (n×k). To obtain this formulation we apply two 
transformations mentioned above on the two types of constraints. 

3.1 Transformation 

We introduce the constraints in the objective function in the following way:  

The objective is transformed under shape ݔܦ்ݔ  by (5), the constraint ܣ ∗ ݔ  = b is introduced by 
   * * :

T
S A x b A x b   

   * *
TT

0x x Dx S A x b A x b     

 ( )T T T T T
0x x Dx S x A Ax 2S b Ax Sb b     

T
0 1x x Q x +m 

where m = ்ܾܾܵ =n×S is a constant, that we can remove: 
T

0 1x x Q x  

The constraints ݔ+ݔ  1	are introduced by Sݔݔ, where S is a positive scalar. The problem (ܫ ெܲௌ) is thus 
replaced by the quadratic problem without constraint after being rid of the constant: 

 
 

T
0

MSCP

minx x Qx
UBQP

xbinary

 



 

3.2 Example 

We consider the example in Fig.1, illustrating two different valid coloring for the same graph with a chromatic 
sum Σ(G) = 9 in Fig.(1.b). The example satisfies the following linear programming: 
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This example has 15 variables and 26 constraints, we chose a scalar S = 6, and we apply both transformations 
then we get: 

5 6 6 6 0 0 0 0 0 0 0 0 6 0 0

6 4 6 0 6 0 0 0 0 0 0 0 0 6 0

6 6 3 0 0 6 0 0 0 0 0 0 0 0 6

6 0 0 5 6 6 6 0 0 6 0 0 6 0 0

0 6 0 6 4 6 0 6 0 0 6 0 0 6 0

0 0 6 6 6 3 0 0 6 0 0 6 0 0 6

0 0 0 6 0 0 5 6 6 6 0 0 0 0 0

0 0 0 0 6 0 6 4 6 0 6 0 0 0 0

0 0 0 0 0 6 6 6 3 0 0 6 0 0 0

0 0 0 6 0 0 6 0 0 5 6 6 6 0 0

0 0 0 0 6 0 0 6 0 6 4 6 0 6 0

0 0 0 0 0 6 0 0 6 6 6 3 0 0 6

6 0 0 6 0 0

Q











 







0 0 0 6 0 0 5 6 6

0 6 0 0 6 0 0 0 0 0 6 0 6 4 6

0 0 6 0 0 6 0 0 0 0 0 6 6 6 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
     

where the constant m = 30. 

On the Figure (1.a) the valid coloring (100010001100001) =்ݔ gives a solution for ܷܳܤ ெܲௌ equal to ݔ= 
−20, and for the case (1.b), the coloring (100001010100010) =்ݔ gives the optimal solution for MSCPUBQP  =ݔ	,
−21. 

4. Solving MSCPUBQP  

After having transformed our problem (MSCP) in unconstrained binary quadratic programming form, we try to 
solve it using an adapted genetic algorithm by judicious choice of operators in (MSCP) problem. 

4.1 Genetic algorithms 

Our approach of resolution of the problem MSCPUBQP  is based on genetic algorithms, their functioning is 
extremely simple, we start with an initial population, we evaluate the performance of each individual, we create 
a new population of potential solutions using evolutionary operators: selection, crossover and mutation. We re-do 
this cycle until it finds a satisfactory solution or the iteration number reaches. 

The population will be generated in a random manner, the size of each individual is equal to n×k, in the case of 
Figure 1, every individual is of size 15, and on each three genes we assign a single 1 and the two remaining 
genes to 0, see Figure 2. 

 

Figure 2. The coding of an individual using 3 colors 

 

We consider the objective function ݔ்ܳݔ  as the evaluation function (fitness) of each individual of the 
population. 

For the selection, first, we randomly choose two individuals, and then we apply the tournament selection 
operator in order to keep the best individual. The comparison between two individuals is carried out according to 
their fitness. 

 

    

              

T T
i i i j j

j

C if C QC C QC
C

C otherwise

  


 

We opted for a simple crossing in a single point, we choose in a random way a point inter-gene b in each parents 
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ଵܲ and ଶܲ  such as b = k×r, where k is the number of colors and r = 1,…, (n − 1). The crossing is made in the 
following way: ܥଵሺ݅ሻ ൌ ൜ ଵܲሺ݅ሻ	݂݅	݅ ∊ ሾ1, ܾሾଶܲሺ݅ሻ	݂݅	݅ ∊ ሾܾ, ݊ሿ ܥଶሺ݅ሻ ൌ ൜ ଶܲሺ݅ሻ	݂݅	݅ ∊ ሾ1, ܾሾଵܲሺ݅ሻ	݂݅	݅ ∊ ሾܾ, ݊ሿ 

 
The individuals ܥଵ and ܥଶ are not necessarily generate according to the rule above, but sometimes, we bring 
some modifications to obtain individuals verifying the conditions of our problem. In the event where a color l is 
lacking in the individual C after the crossover operation, we follow the rule: 

If the individual C resulting after crossing has no color 1  l k then for 1  j ൏ b and b  i  n if C(i) = 
C(j) then C(j) = l, see Figure 3. 

1P

2P

1C
2C

1C 2C

1C 2C

 

Figure 3. Crossing example 

 

The mutation is used with the aim to further explore the search space and reaching solutions that the crossing 
cannot touch them, for this we choose randomly two separate blocks (different colors) of k genes and we 
permute them, we replace the solution p by ′ if f(′ሻ  f(p), see in Figure 4. 

 
Figure 4. Mutation of a individual with five vertices 

 

4.2 Remark 

We fix k at some large value and it decreased by 1 in each subsequent problem until it is no longer possible to 
find a feasible coloring. For each value of k we obtain the associated ܷܳܤ ெܲௌ problem. The number of 
variables of ܫ ெܲௌ change and therefore the size of the symmetric matrix Q changes. Q depends of the number 
of used colors k. 
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5. Results and Discussion 

In this section, we report intensive experimental results of our approach on the well-known DIMACS and 
COLOR02 coloring benchmarks (ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/2; 
http://mat.gsia.cmu.edu/COLOR02/). We compare the results with 4 other state of the art sum coloring 
algorithms from the literature. For each instance, we indicate the number of vertices n, the chromatic number 
χ(G). Column 5 presents the lower bound (LB) given in (Douiri et al., 2012), column 6 indicates the current best 
known sum values ሺܷܤ௦௧) from the literature along with the references reporting these values in brackets, ݏொ is the strength of G given by our approach, the success rate (#hit) we run our algorithm on each graph 10 
times, last column shows the average computation time in seconds to reach the given ܶ௫. The symbol ‘*’ 
means that the related statistics are not available. Our algorithm has been implemented on a PC windows 7, 
AMD Athlon(tm) X2 dual-core QL-65 (2cpus) 2.1 GHz with 4 GB RAM.  

The set of benchmark graphs from the literature are considered in the experiments. The Table 1 is composed of 
38 well-known graphs. Among these graphs, sum coloring results have been reported in the literature 
(Kokosinski et al., 2007; Douiri et al., 2011a; Li et al., 2009;  Wu et al., 2012) denoted respectively by ([1], [2], 
[3], [4]). The parameters of the GA for the UBQPMSCP problem are: population size= 80, crossover rate = 0.75, 
mutation rate = 0.2, and the maximum iterations number ܶ௫ is taken between 120 and 800 iterations 
depending on the size of graph treated. Table 1 shows that our algorithm improves a large sets of benchmark 
graphs treated. Our results disclose that UBQP approach competes favorably with (Kokosinski et al., 2007; Li et 
al., 2009; Douiri et al., 2011a; Wu et al., 2012) on the set of 35 instances. Indeed, UBQP method improves  the 
best known upper bounds of sum coloring for 8 graphs, and finds identical results for 19 graphs. The algorithm 
fails to achieve the best known results on 8 graphs (queen8.8, miles500, dsjc125.1, dsjc125.9, dsjc250.5, 
dsjc250.9, dsjc500.5, dsjc500.9). Concerning the CPU time, for the majority of graphs tested (25 instances) the 
CPU time to reach the smallest sum coloring is less than one minute, but for few hard graphs, the computation 
time is long as the 12 DIMACS random dsjc graphs. 

 

Table 1. Computational results 

Graph n χ(G) LB UBbest [1] [2] [3] [4] UBMSCP SUBQP #hit Time(s)

anna 138 11 272 277[3] 281 * 277 283 277 11 7/10 13.65 

david 87 11 234 237[4] 243 * 241 237 237 11 9/10 19.70 

huck 74 11 243 243[1,2,4] 243 243 244 243 243 11 10/10 1.23 

jean 80 10 216 217[3,4] 218 * 217 217 217 11 8/10 1.07 

queen5.5 25 5 75 75[5,7,21] 75 * 75 75 75 5 10/10 0.19 

queen6.6 36 7 126 138[1,3,2] 138 138 138 150 138 8 10/10 0.27 

queen7.7 49 7 196 196[1,3,4] 196 * 196 196 196 7 10/10 0.42 

queen8.8 64 9 288 291[4] 302 * 303 291 296 10 9/10 0.76 

miles250 128 8 316 328[4] 347 343 334 328 328 9 10/10 3.4 

miles500 128 20 677 709[4] 762 755 715 709 715 22 8/10 5.61 

games120 120 9 442 443[4] 460 446 446 443 443 9 9/10 0.92 

myciel3 11 4 16 21[1,2,3,4] 21 21 21 21 21 4 10/10 0.06 

myciel4 23 5 34 45[1,2,3,4] 45 45 45 45 45 5 10/10 0.11 

myciel5 47 6 70 93[1,2,3,4] 93 93 93 93 93 6 10/10 0.21 

myciel6 95 7 142 189[1,2,3,4] 189 189 189 189 189 7 10/10 3.74 

myciel7 191 8 286 381[2,3,4] 382 381 381 381 381 8 10/10 8.96 

fpsol2.i.1 496 65 2590 3405[2] * 3405 * * 3402 65 7/10 131.3 

inithx.i.1 864 54 2801 3679[2] * 3679 * * 3676 54 6/10 478.11 

mug88-1 88 4 163 190[2] * 190 * * 190 4 10/10 2.35 
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mug88-25 88 4 162 187[2] * 187 * * 187 4 10/10 2.08 

mug100-1 100 4 187 211[2] * 211 * * 202 4 10/10 2.32 

mug100-25 100 4 185 214[2] * 214 * * 204 4 10/10 3.14 

2-Inser-3 37 4 55 62[2] * 62 * * 62 4 10/10 0.69 

3-Inser-3 56 4 84 92[2] * 92 * * 92 4 10/10 0.91 

zeroin.i.2 211 30 1003 1013[2] * 1013 * * 1009 30 6/10 94.02 

zeroin.i.3 206 30 997 1007[2] * 1007 * * 1002 30 4/10 77.58 

dsjc125.1 125 * * 326[4] * * 352 326 332 8 5/10 42.13 

dsjc125.5 125 * * 1017[4] * * 1141 1017 1015 19 8/10 39.27 

dsjc125.9 125 * * 2512[4] * * 2653 2512 2519 45 4/10 41.30 

dsjc250.1 250 * * 985[4] * * 1068 985 978 9 6/10 71.1 

dsjc250.5 250 * * 3246[4] * * 3658 3246 3248 31 7/10 89.82 

dsjc250.9 250 * * 8286[4] * * 8942 8286 8302 74 4/10 225.91 

dsjc500.1 500 * * 2850[4] * * 3229 2850 2850 13 6/10 185.26 

dsjc500.5 500 * * 10910[4] * * 12717 10910 11016 52 6/10 830.07 

dsjc500.9 500 * * 29912[4] * * 32713 29912 29916 130 3/10 862.14 

 

6. Conclusion 

In this paper we proposed a resolution approach for the minimum sum coloring problem (MSCP) which is an 
NP-complete problem in combinatorial optimization. We transformed the linear model into an unconstrained 
binary quadratic programming model UBQP. We have subsequently solved it with an adapted genetic algorithm. 
We have shown that this approach obtains highly competitive results on a large number of DIMACS challenge 
benchmark graphs. The obtained results show the efficiency of our method and its competitiveness with the other 
cited approaches. 
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