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Abstract 

This letter discusses hybrid projective dislocated synchronization of Liu chaotic system with five uncertain 
parameters. Based on adaptive technique, the hybrid projective dislocated synchronization of Liu chaotic system 
is achieved by designing a novel nonlinear controller. Furthermore, the parameters identification is realized 
simultaneously. A sufficient condition is given and proved theoretically by Lyapunov stability theory and 
LaSalle’s invariance principle. Finally, the numerical simulations are provided to show the effectiveness and 
feasibility of the proposed method. 

Keywords: Hybrid projective dislocated synchronization, Parameters identification, Liu chaotic system, 
Adaptive technique 

1. Introduction 

Since the pioneering work on chaos synchronization by Pecora and Carroll in 1990 (Pecora, 1990), chaos 
synchronization has attracted much attraction due to its potential applications in many practical engineering 
fields, such as secure communication, information processing, chemical reaction, and so on. In the past two 
decades, many types of synchronization phenomena have been studied, namely, complete synchronization (Lu, 
2005), generalized synchronization (Jia, 2008), phase synchronization (Ho, 2002), lag synchronization (Chen, 
2007), etc. Meanwhile, many schemes for chaos synchronization have been proposed, including linear and 
nonlinear feedback approach (Wang, 2006; Jia, 2007), adaptive technique (Jia, 2007), coupled method (Chen, 
2011), impulsive control method (Luo, 2008), among many others. 

Mainieri and Rehacek considered a type of chaos synchronization, called projective synchronization (Mainieri, 
1999), where the corresponding state vectors of drive-response systems could be synchronized up to a constant 
scaling factor. In Ref. (Hu, 2007), Hu et al. proposed a dislocated synchronization method. In this paper, we 
investigate the hybrid projective dislocated synchronization and parameters identification of Liu chaotic system. 
In this scheme, every state variable of drive system synchronizes other mismatched state variables of response 
system with different scaling factors. Based on the adaptive technique, a novel controller and parameter adaptive 
laws are designed such that parameters identification is realized, and hybrid projective dislocated 
synchronization of Liu chaotic system is achieved simultaneously. 

This work is organized as follows. The drive and response systems are described and hybrid projective 
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dislocated synchronization errors are theoretically analyzed in section 2. In section 3, a general scheme for 
hybrid projective dislocated synchronization of Liu chaotic system and parameters identification is proved. 
Section 4 presents some numerical simulations to show the effectiveness of the proposed scheme. Finally, 
conclusions are shown. 

2. Problem Formulation 

The Liu chaotic system (Liu, 2004) as the drive system is given by 
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having a chaotic attractor when 10, 40, 2.5, 4, 1a b c h k     . Here the Lyapunov exponents of system (1) 
are found to be 1 2 31.64328, 0, 14.42L L L    . The phase portrait is shown in Figure 1. 

Considering the drive system (1), the response system is controlled Liu chaotic system as following 

 1 2 1 1

2 1 1 3 2

2
3 3 1 3

,

,

,

s

s s

s s

y a y y u

y b y k y y u

y c y h y u

  


  
    







                                (2) 

where the system parameters , , , ,s s s s sa b c h k of (2) are unknown,  1 2 3, ,
T

U u u u is the controller which should be 

designed. Therefore, the goal of parameters identification and hybrid projective dislocated synchronization is to 

find an appropriate controller  1 2 3, ,
T

U u u u and parameter adaptive laws of , , , ,s s s s sa b c h k , such that the 

synchronization errors 

1 1 2 2 2 2 3 3 3 3 1 10, 0, 0e y x e y x e y x           as t              (3) 

and the unknown parameters 
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where 1 2 3, ,   are the scaling factors. 

Remark 1 When 1 2  or 1 3  , the hybrid projective dislocated synchronization will appear. When 

1 2 3    , projective dislocated synchronization will appear. More in general, dislocated synchronization and 
dislocated anti-synchronization will appear when 1i  and 1, 1, 2,3i i    , respectively. 

Remark 2 Here are another four types of hybrid projective dislocated synchronization errors 
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For these cases, the discussions are similar to the method given in this paper. 

3. Hybrid Projective Dislocated Synchronization of Liu Chaotic System 

In this section, based upon the nonlinear adaptive feedback control technique, a systematic design process of 
parameters identification and hybrid projective dislocated synchronization of Liu chaotic system under the 
situation of response system with unknown parameters is provided. 

According to the systems (1) and (2), the errors dynamical system can be obtained as follows. 
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Obviously, hybrid projective dislocated synchronization of systems (1) and (2) appears if the errors dynamical 
system (5) has an asymptotically stable equilibrium point 0e  , where  , ,1 2 3

T
e e e e . 
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Thus, we design the controller and parameter adaptive laws as the following theorem. 

Theorem Assuming that the Liu chaotic system (1) drives the controlled Liu chaotic system (2), take 
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and parameter adaptive laws 
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Systems (1) and (2) can realize hybrid projective dislocated synchronization and the unknown parameters will be 
identified, i.e., Eqs. (3) and (4) will be achieved. 

Proof Eq. (5) can be converted to the following form under the controller (6) 
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Consider the following Lyapunov function 

            2 2 2 2 22 2 2
1 2 3

1
,

2 s s s s sV e e e a a b b c c h h k k                

Obviously, V is a positive definite function. Taking its time derivative along with the trajectories of Eqs. (8) and 
(7) leads to 
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It is obvious that 0V  if and only if 0, 1, 2,3ie i  , namely the 
set  0, , , ,s s sM e a a b b c c     ,s sh h k k  is the largest invariant set contained in  0E V  for Eq. (8). 
So according to the LaSalle’s invariance principle (Lasalle, 1960), starting with arbitrary initial values of Eq. (8), 
the trajectory converges asymptotically to the set M , i.e., 0, , , ,s s s se a a b b c c h h     and sk k  
as t  . This indicates that the hybrid projective dislocated synchronization of Liu chaotic system is achieved 
and the unknown parameters , , , ,s s s s sa b c h k can be successfully identified by using controller (6) and parameter 
adaptive laws (7). Now the proof is completed. 

Remark 3 Taking our adaptive synchronization method, we can not only achieve synchronization but also 
identify the system parameters. 

4. Numerical Simulation 

In this section, some numerical simulations about the hybrid projective dislocated synchronization and 
parameters identification between systems (1) and (2) are given to verify the effectiveness and feasibility of the 
proposed technique. In the numerical simulations, all the differential equations are solved by using the 
fourth-order Runge-Kutta method. 

We assume that the drive signals are from the Liu chaotic system (1) with system parameters 
10, 40, 2,5, 4, 1a b c h k     and the initial values    0 2.2, 2.4,38

T
x  , the initial values of controlled Liu 

chaotic system (2) is    0 9, 2, 15
T

y    and the unknown parameters have zero initial condition. The three 
scaling factors are chosen as 1 2 32, 1, 2.8      . The simulation results are shown in Figures 2 and 3. Figure 
2 (a)-(c) display the errors state response of systems (1) and (2), Figure 3 shows the identification results of 
unknown parameters , , , ,s s s s sa b c h k . 
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5. Conclusion 

In this letter, we introduce an adaptive hybrid projective dislocated synchronization and parameters identification 
scheme for the Liu chaotic system with the response system parameters unknown. With this scheme we can 
achieve hybrid projective dislocated synchronization and parameters identification simultaneously. Theoretical 
proof and numerical simulations demonstrate the effectiveness of the proposed scheme. 

It should be pointed out that, although this process is focused on the Liu chaotic system, the systematic design 
process could be used for many other complex dynamical systems with unknown parameters. 
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Figure 1. The phase portrait of Liu chaotic system (1) with parameter values 

10, 40, 2.5, 4, 1a b c h k      
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Figure 2. The synchronization error evolutions of systems (1) and (2): 

(a) 1 1 2e y x  ; (b) 2 2 32.8e y x  ; (c) 3 3 12e y x   
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Figure 3. The parameters identification results of response system (2): 

(a) 10sa  ; (b) 40sb  ; (c) 2.5sc  ; (d) 4sh  ; (e) 1sk   

 


