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Abstract 

In this letter, the alternating-direction-implicit (ADI) technique is applied to Symplectic finite-difference 
time-domain (SFDTD) method, the curl operator is endued with two different styles when doing computation 
from the ( 1)s  th progression to s th progression. It holds the advantages of both ADI-FDTD and SFDTD, 
not only eliminating the restriction of the Courant-Friedrich-Levy (CFL), but also holding the inner 
characteristics of Maxwell’s equations. The analytical accuracy and efficiency of the proposed method is verified 
good. 

Keywords: Alternating-direction-implicit (ADI), Symplectic finite-difference time-domain (SFDTD), Growth 
matrix, Numerical dispersion 

1. Introduction 

FDTD method is a very useful numerical simulation technique for solving electromagnetic questions. As we 
know, the traditional FDTD method is based on the explicit finite-difference algorithm, hence, it is limited by 
Courant-Friedrich-Levy (CFL) stability condition. In order to eliminate the Courant–Friedrich–Levy (CFL) 
condition restraint, Unconditionally sTable algorithm ADL-FDTD( the alternating-direction-implicit technique 
finite difference time domain)  has been proposed. But in the common ADI-FDTD method, the choice of large 
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time intervals leads to substantial dispersion errors that degrade its performance (A. P. Zhao, 2000; F. Zheng et 
al., 2000; Huang Z X et al., 2007). 

Effective studies (M Kusaf et al., 2005; Ruth F D, 1983) revealed that Maxwell’s equations can be viewed as an 
infinite dimension Hamilton system. FDTD and ADI-FDTD destroy Maxwell’s equations’ Symplectic structure, 
so they are not good algorithms for Maxwell’s equations’ numerical simulation. A good algorithm must hold 
Maxwell’s equations’ Symplectic structure. 

In this paper a novel algorithm that bases on SFDTD (symplectic finite difference time domain) and ADI has 
been proposed. We transform Maxwell’s equations to Hamilton’s equations, and use symplectic propagation 
technique disperse Hamilton’s equations in time domain, and use the  ADI technique to discredited Hamilton’s 
equations’ curl operator R  in spatial domain, then, we discuss the ADI-SFDTD algorithm’s stability and 
numerical dispersion systemically, finally we validate the proposed ADI-SFDTD formulation by a numerical 
example. 

2. ADI-SFDTD method 

2.1 Hamilton transform of Maxwell’s equations 

In a linear, homogeneous, and isotropic medium, Maxwell’s equations can be written as (J. W. Thomas, 1995): 
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Where,  is medium’s permittivity and  is medium’s permeability. In the Hamilton system, Maxwell’s 
equations can be written as 
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Where, Hamilton function ( , )H B D  is defined as 
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In the equation (5),   is the inspection function. 

2.2 ADI-SFDTD method 

Studies revealed that Hamilton’s equations can be transformed into (6), written as 
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Where, 
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In time domain, from time 0t   to time t  , the results of (6) can be written as 

                           ( ) exp( ( )) (0)A B 
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For exponential operator can’t be used to compute, the exponential operator is approximate to (8) by using 
symplectic propagation technique. 
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Where, , ( )m p m p  are symplectic propagation’s progression and order. According to (J. W. Thomas, 1995), 

choose the suiTable propagation sub coefficients { }sc and{ }sd , it can preserve Maxwell’s equations’ inner 

characters. In this paper, we use the optimized 5 progression and 4 order propagation sub coefficients. 

For ( ) 0, ( , , )u u A B = 2,3, L k k , the exponential operators exp( )AL  and exp( )BL  can be explicitly 
expressed as 

                                 6exp( )A A  L I L                                      (9a) 

                                6exp( )B B  L I L                                       (9b) 

There is curl operator R in Factors AL and BL , so in order to get the numerical results of Maxwell’s equations, 

we must discredited the equations in spatial domain again. 

Introducing the plane wave’ propagation equation, written as: 

                     0( , , , ) exp( ( ))x y zf x y z t f j i xk j yk z zk wn t                             (10) 

In the spherical coordinate system: 0 sin cosxk k   , 0 sin sinyk k   , 0 coszk k  . 

The positive direction of   is that of the right-handed rotation from x to y about z axis, the positive 

direction of   is from the positive z axis towards the negative z axis, 1j    and 0k  is the numerical 

wave number. 
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       indicates the s th progression approximate solution of function 'f s  

closed-form solution at discretization point ( , , )i x j y k z    in the n  th time step. There, Every time step need 

m  progression to simulate and the time increment of the s th progression to 1s   th progression is s t  . 

Applying the ADI principle into R , we define two different curl operators about R , marked as 1R  and 2R  in 

following. In ( 1, 2)  R , the I indicates implicit form and E  indicates explicit form. 
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At s th progression of n  th time step, in x-direction, the implicit form is defined in equation (12a) and the 
explicit form is defined in (12b). 
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In the same way, y-direction’s implicit form is , ,
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In the same way we can get 
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Substituting (13a) and (13b) into (11a) and (11b), we get 

                                1 2 ( 1)h  R R R                                        (15) 

Equation (7) can be written as 



www.ccsenet.org/mas                     Modern Applied Science                  Vol. 5, No. 6; December 2011 

Published by Canadian Center of Science and Education 161

                       
1 2 1 2

2 2 1 1

2 2 1 1

( )

exp[ ( )] (0)

exp{ [( ) ( )]} (0)
( 1)

exp[ ( )]exp[ ( )] (0)
( 1) ( 1)

2 2
exp[ ( )]exp[ ( )] (0)

( 1) 2 ( 1) 2

2
exp[

( 1)

A B

A A B B

A B A B

A B A B

h

h h

h h

h







 

 



 
 
 

 
   

 
 

       
 

       
 

       




B

D

B
L L

D

B
L L L L

D

B
L L L L

D

B
L L L L

D

2 2( )] ( )
2 2A B

 
  

 

B
L L

D

                          (16) 

So the computation from the ( 1)s  th progression to s th progression is broken up into two sub-steps: the first 

step
1

1
2

s s    and the second step
1

2
s s  . 

For xD  component, we take 
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as the second step. 

For xB we can get 
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obtained in the same way. 

In (17a) and (17b), both sides contain the unknown field components on the right hand side, so the iterative 

calculation can’t be done directly. Substituting (13b) into (17a) and (17b), we can get (19a) and (19b). 
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3. Analysis of stability and numerical dispersion 

3.1 Stability analysis 

According to (16), growth matrix G can be presented as the product of the first procedure growth matrix 1G  

and the second procedure 2G  , written as: 
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  indicates the growth factor of the total procedure, 1  indicates growth factor of the first procedure and 2  
indicates growth factor of the second procedure. According to the principle of the matrix growth, we obtain that 

1  satisfies equation (21a) and 2 satisfies equation (21b): 
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By solving (21a) and (21b), the growth factor of the first procedure 1 is 
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and the second procedure 2  is 
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Finally, 1 and 2  yields , which indicates the growth factor of the total procedure as follows: 

                                 1 2 1                                             (24) 

Equation (24) is always satisfied, so that the ADI-STDTD algorithm is unconditionally sTable in any case. 

3.2 Numerical dispersion 

Now we assume 1 2 s    of (21a) and (21b)[9]. By adding (21a) and (21b) we then get 
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Equation (25) can be written as follows: 
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Putting them into (26), we obtain 
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This suggests that numerical dispersion of the ADI-SFDTD method can be reduced to any degree if appropriate 

cells are used. Figure 1 is the normalized phase velocity of different  for different FDTD schemes, we see the 
proposed ADI-FDTD has good performance. Figure 2 shows the normalized error contrast between ADI-FDTD 
and ADI-SFDTD, it clearly shows that ADI-SFDTD is more efficiency. 

4. Conclusion 

In this paper , a novel algorithm that based on SFDTD and ADI technique has be proposed, the spatial  
discretization scheme curl operator R  is endued with two different styles when doing computation from the 
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( 1)s  th progression to s th progression. Then, Its stability and numerical dispersion has been analyzed. The 
results show that the proposed method has good efficiency and accuracy. 
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Figure 1. Normalized phase velocity of different  for different FDTD schemes 
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 Figure 2. The normalized numerical dispersion error contrast between ADI-FDTD and ADI-SFDTD 


