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Abstract 

To reduce the memory usage of computing, the locally one-dimensional reduced finite-difference time-domain 
method is proposed. It is proven that the divergence relationship of electric-field and magnetic-field is non-zero 
even in charge-free regions, when the electric-field and magnetic-field are calculated with locally 
one-dimensional finite-difference time-domain (LOD-FDTD) method, and the concrete expression of the 
divergence relationship is derived. Based on the non-zero divergence relationship, the LOD-FDTD method is 
combined with the reduced finite-difference time-domain (R-FDTD) method. In the proposed method, the 
memory requirement of LOD-R-FDTD is reduced by1/6 (3D case) of the memory requirement of LOD-FDTD 
averagely. The formulation is presented and the accuracy and efficiency of the proposed method is verified by 
comparing the results with the conventional results. 

Keywords: FDTD, LOD-FDTD, R-FDTD, CFL  

1. Introduction 

The finite-difference time-domain (FDTD) method has been widely utilized in the electromagnetic calculations 
(Singh. G, Eng Leong Tan, Zhi Ning Chen, 2010). However, its time-step size is constrained by the 
Courant-Friedrichs-Lewy (CFL) condition. And its requirement of computer memory can become a limitation 
for electrically large bodies. To eliminate the restriction of the CFL, some unconditionally stable techniques, 
such as the alternating-direction implicit FDTD (ADI-FDTD) method (Takefumi Namiki, 1999)(Eng Leong Tan, 
2010), and more recently, the locally-one-dimensional FDTD(LOD-FDTD) (F. Zheng, Z. Chen, and J. Zhang, 
1999)(Rouf H. K, Costen F, Garcia D. G. 2010), have been proposed. The advantage of the LOD-FDTD is fewer 
requirements of arithmetic operations than ADI-FDTD while providing comparable accuracy. But the LOD 
method needs more computer memory than the original FDTD also, because of the iteration process. 

Reduced finite-difference time-domain (R-FDTD) is a method, using the divergence relationship which links the 
Maxwell curl equations, to reduce the number of required field components (B. Liu, B. Q. Gao, W. Tan, and W. 
Ren, 2002). In the three-dimensional(or two-dimensional) case, it makes use of a 2-D array(or 1-D array) to 
repeat storing a 3-D(or 2-D) field component array instead of storing this field component in the whole domain. 
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As a result, a 1/3 memory reduction is achieved average (G. D. Kondylis, F. D. Flaviis, G. J. Pottie, T. Itoh, 
2001)(B. Liu, B. Q. Gao, W. Tan, and W. Ren, 2002). 

In this paper, it is proven that the divergence relationship of electric-field and magnetic-field is non-zero even in 
charge-free regions, when the electric-field and magnetic-field are calculated with the LOD-FDTD method. The 
concrete expression of it is derived. Based on the relationship, the LOD-R-FDTD method is proposed, which is 
combined the unconditionally stable LOD-FDTD method with the R-FDTD method. The 3-D equations are 
derived. In the proposed method, the merit of LOD-FDTD, e.g. increasing time-step size and decreasing 
calculation time, is kept. At the same time, the memory requirement is reduced by 1/3(2-D case) or 1/6(3-D case) 
of the memory requirement of LOD-FDTD. Numerical experiment is presented to verify the efficiency of the 
presented method. 

2. The LOD-R-FDTD Method 

A) Non-zero divergence relationship for LOD-FDTD 

Without loss of generality, the 3-D case is considered. The 3-D LOD-FDTD equations proposed in( Iftikhar 
Ahmed, Eng-Kee Chua, Er-Ping Li, and Zhizhang Chen, 2008) are complex relatively, because of three updating 
steps. In (E. L. Tan, 2007), the 3-D method is a two-step approach, but is complicated in its formulations. In this 
paper, we use the method of (Liu Guo-sheng, Zhang Guo-ji, 2010), in which equations are simpler and 
unconditionally stable. We assume the medium in which the wave propagates is a vacuum. The solution 
marching from the nth time step to the (n+1)th time step is broken up into two sub-steps. The 3-D LOD-FDTD 
equations are as follows: 

Sub-step 1: 21nn   

n
zy

21n
zy

n
x

21n
x H

2

t
H

2

t
EE  







                                   (1) 

n
xz

21n
xz

n
y

21n
y H

2

t
H

2

t
EE  







                           (2) 

n
yx

21n
yx

n
z

21n
z H

2

t
H

2

t
EE  







                                         (3) 

n
yz

21n
yz

n
x

21n
x E

2

t
E

2

t
HH  







                                       (4) 

n
zx

21n
zx

n
y

21n
y E

2

t
E

2

t
HH  







                                        (5) 

n
xy

21n
xy

n
z

21n
z E

2

t
E

2

t
HH  







                                         (6) 

Sub-step 2: 1n21n   
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Based on the classical electromagnetic field theory, it can be derived that the divergence is zero in the 
charge-free regions (G. D. Kondylis, F. D. Flaviis, G. J. Pottie, T. Itoh, 2001). The equations of E and H are as 
follows: 

0E                                                       (13) 

0H                                                       (14) 

It can be proven that the zero divergence of E and H is not existent when the components of electromagnetic 
field being calculated by the LOD-FDTD method, by bringing the components of electric-field and 
magnetic-field of standard Yee algorithm into (13) and (14). Its equations derive as follows:  

At time 21n  , the divergence of 21nE  is 
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Assuming that initially at time t=0( 0n  ), all the field components are zero over the whole computational 
domain, we obtain 
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In the magnetic-field, we obtain the divergence of 21nH  as 
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At time 1n  , the divergence of 1nE  is 
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Assuming that initially at time t=0( 0n  ), all the field components are zero over the whole computational 

domain, and bring (17) into (20), we obtain the divergence of 1nE  as 
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In the magnetic-field, the divergence of 1nH  is 
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Equations (17) (22) and (18) (21) demonstrate a spatial dependence among the field components. We can use it 
to link a field component to the other five at each time step, and this way, we reduce the number of field 
components needed in LOD-FDTD from twelve to ten in the 3-D case. Similarly, in the 2-D case, we reduce the 
number of components from six to four. 

B) Combining LOD-FDTD with R-FDTD 

We assume the magnetic permeability coincides and the electric conductance coincides with that of free space 
( 0  , 0  ). Consider the 3-D case, where the size of whole computational domain is zyx NNN  , i. e., 

at time 21n  , the field components are xE , yE , zE , xH , yH and zH . Equation (17) can be used to 

link one of them to the others, and equation (22) can be used to establish another link at time 1n  . Due to 
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spatial dependence of the electric and magnetic fields through these two equations, the total number of variables 
for the 3-D formulations is reduced from twelve required to ten. In principle, one can independently choose the 
components of E and H, which will be only locally updated and not stored, but it will simplify calculations if we 
choose components of the same direction for E and H. Without loss of generality, consider the case where 

21n
yE  and 1n

zH 
 are the components that are only locally calculated, and are not stored in the whole domain. 

The update equations are as follows: 
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Beginning with the updates of 21n
zH , one realizes that these can be done one k=constant plane at a time, with 

the prior spatial update of n
zH  through (24). In the same way, the updates of 1n

yE
 

can also be done one 

j=constant plane at a time, with the prior spatial update of 21n
yE

 
through (23). 

For the 3-D case, a two-dimensional array having size of zx NN   must be used for removed component 
21n

yE . For the removed component 1n
zH  , a two-dimensional array having size of yx NN 

 
is used. The extra 

memory requirement for these arrays is not significant, and since the choice of which components to remove is 
arbitrary, we can always choose to remove the field components in the direction for which the corresponding 

arrays are minimized. Note the innovative feature of the formulation: e. g., for store 21n
yE

 
, one  j =constant 

plane at a time and is stored in the same memory locations as for the previous j. Correspondingly, for 1n
zH  , 

also one k=constant plane at a time and is stored in the memory locations for the previous k. The pseudocode for 
the 3-D case is shown at the end of this paper. 

3. Numerical Results 

To assess the LOD-R-FDTD in terms of accuracy and efficiency, we analyze numerical example as a benchmark. 

The 3-D problem is considered. 

We consider a cmcmcm 212   rectangular cavity, the space is vacuum and charge-free ( 0  ). We set
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mmzyx 1 , and use a problem space of 201020   cells. The time step of LOD-R-FDTD is set as 

CFLRLOD dtdt 8.5 . The absorbing boundary condition is PML medium having 8 cells along x and y direction, 

which is set on the surface of the cavity. The source region will be treated as (G. D. Kondylis, F. D. Flaviis, G. J. 
Pottie, T. Itoh, 2001). Fig. 1 shows the time-domain electric-field waveforms obtained by the traditional FDTD 
method, the LOD-FDTD method and the LOD-R-FDTD method. 

From Fig. 1(a), one can see that the LOD-R-FDTD method is unconditionally stable. In Fig. 1(b), the results of 
the proposed method and the LOD-FDTD method are in good agreement. In this problem, the computer memory 
requirements of LOD-R-FDTD are reduced to 86.3% of the LOD-FDTD requirements. 

4. Conclusion 

A 3-D LOD-R-FDTD method is formulated in this paper. And it is proven that the divergence relationship of 
electric-field and magnetic-field is non-zero even in charge-free regions, when the electric-field and 
magnetic-field are calculated with the LOD-FDTD method. Based on the non-zero divergence, we propose the 
LOD-R-FDTD method. This method not only eliminates the restriction of the CFL, but also reduced the memory 
requirements by 1/3(2-D case) or 1/6(3-D case) of the memory requirements of LOD-FDTD. The numerical 
results prove the proposed method is valid. 
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(1) sub-step 21nn  :                       (2) sub-step 1n21n  : 
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End do 
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End do
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(a) 

 
(b) 

Figure 1. Time-domain electric-field waveform 

(a) LOD-R-FDTD method. (b) Comparison among these three methods. 

 


