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Abstract 

In order to deal with the acoustic radiation from rotating sources, this paper describes a frequency-domain 
numerical method for predicting sound radiation. The method is based on the analytical Green’s function of 
rotating monopole and dipole source in free space. Sound radiation model is established and characteristics of 
sound field are discussed by numerical simulation and the relationship between radiated sound frequencies and 
acoustic nature frequency of source, angular frequency and its harmonics can be revealed .The radiated sound 
field has a strong directivity, fundamental frequency transmitting in the rotary shaft direction and harmonics 
spreading along radial direction and frequency shift phenomena appearing clearly in higher rotating speed of 
source. The method has a theoretical significance for exploring the low-noise rotating machinery. 

Keywords: Acoustic radiation, Rotating dipole sources, Analytical green’s function 

1. Introduction 

Due to the relative motion between medium and sound source, the sound radiation of moving source has become 
the difficulty in acoustic domain. More attention to the complexity of sound generation of moving sound sources 
has been paid by some authors. P.M.Morse and K.U.Zngard have been discussed sound pressure of linear motion 
point source using the coordinate transform. This research is only available for simple moving sources and for 
the complex motion source the coordinate transform is difficult or impossible. M.V.Lowson derived firstly 
acoustic equations from rotating point force .The equations is applied to predict the sound radiation of rotor and 
the prediction pressure is exact, but the equation is only used to rotor in free field and in fact the rotor is often in 
case or in box, the effect from the boundaries is neglect. This will give more inaccurate for the prediction 
pressure. In order to overcome the disadvantage, K.D.Hand D.J.Leeh as given sound field equations of rotating 
point force with cylindrical boundary using direct boundary element method, Helmholtz equation and its normal 
derivative and W.H.Jeon and D.J.Lee extended this research, discussed centrifugal fan features of the sound 
source and forecasting method and Han-Lim Choid and D. J. Lee began to study rotating acoustic source 
radiation in open thin wall pipe. These methods have established the foundation for sound radiation of moving 
source, but there are some problems needed to overcome further. The assumption of point source and plane wave 
simplify the fact but the more inaccurate for the prediction will bring. Moreover, the sound pressure equations 
are often given in time domain. The time model is difficult to calculate and obtain the numerical solution. In 
order to deal with the problems above, in the present paper the analytical expressions of the pressure of rotating 
dipole in frequency domain based on numerical Green’s function is derived in section2. Characteristics of Sound 
field are given by numerical simulation in section3. The results are presented in section4.The analytical method 
provided important theoretical value for the research of sound radiation and noise control of moving source. 

2. Analytical formulae of rotating dipole sources 

In this section, the analytical Green’s function and sound pressure model of rotating dipole sources is derived in 
the frequency domain. Rotating dipole source’s analytical Green's function and sound field expressions in 
frequency domain based on the rotating point source Green's function is derived. Two dipole form, the horizontal 
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(along the orientation) and vertical directions (along the z axis), are discussed. Two point sources of opposite 
phase, as shown in Figure.1 and Figure. 2. 

We can get multipole field by the partial derivatives of free-field rotating point source’s Green’s function that are 
taken with respect to the source coordinates. By taking the Green formula as a common starting point. 

2.1 Free-field analytical Green’s function 

The Green’s function G(x, t|y,τ) is defined as the response of the flow to a impulsive point source represented by 
delta functions of space and time:   
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Where  ,x t


are for the observer’s position x


at time t ,  ,y  are for the source’s location and time  sr x y  
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,

0c are for acoustic velocity. Ĝ is the Fourier transformed Green’s function defined by 
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Taking the Fourier transform on both sides of the formula (2) can get Green's function in frequency-domain  
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Where is nature frequency of source, 0/ c  is wave number. 

Expanding formula (3) by Legendre and Spherical harmonic functions in the spherical coordinates: 
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By the Euler's formula and addition theorem 
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 is the angle between the vector 0r and r . 

Taking formula (4) into (3), Green’s function of rotating point source in free space is given by 
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Vertical Green's function of rotating dipole source is defined the derivatives of Ĝ that is taken with respect to 
the source coordinates of the direction of ( 0)Z   ,which is shown as below: 
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Horizontal Green's function of dipole source is the derivatives of Ĝ along the orientation 
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2.2 Sound pressure model and Directivity 

2.2.1 Sound pressure of rotating dipole source 

On the basis of the assumption, the acoustic field is for a given time-harmonic source distribution
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Sound pressure is given by 
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Taking the Fourier transform on both sides of the formula (9) can get sound pressure in frequency-domain  
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Where  Q   is point source strength, Assumption the  0A  is the Fourier transform of  Q  , then 
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For a given time-harmonic source, formula (11) is rewrite as  
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Where t is the source natural frequency. 

The sound pressure of rotating dipole sources are presented 

    

 
          

    

0

0

2
0 02

0 0

!(2 1)
( ) cos 0 cos

!8

n
imm m

z s m n n n t
n m

im
t

n mn
p D i B P P e m

n m

e m





      


  




 

 

           

    


  (13) 

     
     

        0 0

0 02
0 10

!(2 1)
0 cos 0 cos

!8

n
m mn

s n n n n
n m

im im
t t

n mi n B
p D P P im P P

n mr

e m e m



 


 



     



 

  

     


      

 
             (14) 

We defined the dipole strength s sD Q d , and assume that d is vanishingly small.  

2.2.2 Directivity of rotating dipole source 

The far-field directivity pattern defined by removing the i re r factor so that the directivity pattern  ,D   is 
defined by 
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far-field directivity of rotating dipole source 
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3. Numerical Analysis of Sound field 

Acoustic field characteristics are given in the condition of time-harmonic source. Simulation parameters: 
Azimuth of observation point 0 / 4   ,source nature frequencies t are respectively2300Hz and 

6800Hz,rotating angular frequencies  are 112 rad/s and 560 rad/s, acoustic field frequency is shown

t k    , k is harmonic orders for arbitrary integer that sets 5, ,5k    .For symbol concision in figures 

using 0 substitute for andY substitute for 0 that are evaluated with 0, /18, / 6, / 3, / 2    respectively. 

For far-field 2r m and 0 0.3r m .Simulation results are demonstrated in Figure. 3 and Figure.4.  

①In Figure.3, with the increasing of nature frequencies, the far-field sound pressure amplitude of vertical dipole 
increases, the scope of harmonic distribution expand and fundamental frequency component reduce as the 
observation angle augmentation. Harmonic distribution is the most abundant in the observation angle of

/ 2 .②There is only fundamental frequency in the rotating axis direction .③With the increasing of angular 
frequencies, the distribution of harmonics and sound pressure amplitude increase. 

④In Figure.4 sound pressure amplitude is impacted greatly by the nature frequencies. the scope of harmonic 
distribution expands with the increasing of view angle.⑤ Fundamental frequency is evidence in the small 
observation angle as 0 and /18 .there is no harmonic orders in the observation angle of / 2 .⑥The nature and 
angular frequencies changing have great effect on the harmonic distribution. Rotating dipole sources have an 
intensive space directivity that are shown in Figure.5 and Figure.6.With the increasing of harmonic orders, the 
directivity of vertical dipole becomes intensive. Especially, sound power focuses on the range from / 6 to / 3
in Figure.5. In Figure.6 with the increasing of harmonic orders, the directivity of horizontal dipole becomes 
intensive. Especially, sound power focuses on the range from / 3 to / 2 .The distribution from horizontal and 
vertical rotating dipole source at different observation angle is shown by Figure7.The total sound pressure is 
mainly from horizontal rotating dipole source. 

4. Conclusions 

A frequency-domain analytical method has been developed for predictiong sound field of rotating diople 
source.The method is based on analytical Green’s function in freqency-domain.Sound pressure model and the 
characteristics of sound field of moving source are discussed. By numerical simulations we can get that the 
sound field frequecy involves nature frequency ,angular frequency and its harmonics ,the distribution from 
horizontal and vertical rotating dipole source, and The intensive directivity .The method and results have 
important theoretical significance on the moving source sound field characteristic analysis and exploring the 
low-noise design of rotary machine.  
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