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Abstract 
Distributed denial of service (DDoS) attack is generally known as one of the most significant threats to the internet 
of things (IoT). Current detection technologies of DDoS attacks are not adequate for IoT systems because of the 
peculiar features of IoT such as resource constraint nodes, specific network architecture, and specific network 
protocols. Providing adequate DDoS attacks detection systems to IoT, however, becomes a necessity since IoT is 
ubiquitous. This study hence developed a deep learning-based model for detecting DDoS in IoT, while considering 
its peculiarities. The proposed deep learning-based model was formulated using a deep Gaussian-Bernoulli 
restricted Boltzmann machine (DBM) because of its capability to learn high-level features from input following 
the unsupervised approach and its ability to manage real-time data that is common in the IoT network. Furthermore, 
the SoftMax regression was used for classification. The accuracy of the proposed model on the network socket 
layer-knowledge discovery in databases was obtained as 93.52%. The outcome of the study shows that the 
proposed DBM can efficiently detect DDoS attacks in IoT. 
Keywords: Boltzmann machine, deep learning, DDoS, IoT, nsl-kdd 
1. Introduction 
The Internet of Things (IoT), is generally a self-configuring network of small sensor nodes in which nodes 
communicate with one another to sense, supervise, comprehend the physical world and provide services (Aris et al., 
2015). Because of its ubiquitous and pervasive characteristics, its applications have appeared in a variety of 
domains, including health care, fitness, home energy management, classroom automation, smart cities, and many 
more (Alqahtani et al., 2020). IoT is now receiving wide adoption in many sectors that require things to 
interchange via the internet to process chores smartly with little or no human involvement. Unfortunately, security 
in IoT has gained considerable concern in recent times. The distributed denial of service (DDoS) attack represents 
the most important threat to IoT (Arnaboldi & Morisset, 2017; Robert & Wang, 2020). This denial of service (DoS) 
is a class of cyberattacks whose aim is to destruct or deny the use of services, such as environmental monitoring or 
services accessible remotely. An attack might come from one source - DoS or multiple sources - referred to as 
DDoS (Robert and Wang, 2020). In a study conducted by Kaspersky Labs in 2017, the consequences of DDoS on 
organizations have increased considerably and is, on average between $120 thousand and $2 million, which 
implies the incapability to run businesses, insurance premium increases, loss of contracts, and opportunities. In 
addition, the appraisal reveals that 70% of IoT devices are very easy to attack (Denise, 2020).  
Despite the existence of various DDoS detection techniques based on traditional methods, current solutions are 
limited for IoT systems, because of IoT’s peculiar features that affect detection system development. First, finding 
nodes in IoT networks that can support detection system agents is difficult. In fact, nodes are generally resourced 
constraints in IoT networks. The second peculiar feature is the architecture. Communications in IoT networks 
often follow the multi-hop method and nodes can simultaneously forward packets while working as end devices. 
The last feature is related to IoT’s network protocols. Network protocols used in IoT are not common (for instance, 
IEEE 802.15.4, 6LoWPAN, RPL, CoAP, etc.). New protocols bring new vulnerabilities and require novel 
detection systems. Encryption and authentication are insufficient to protect IoT systems (Kasinathan et al., 2013). 
By inheriting Internet protocol (IP) technologies and low-power wireless links, IoT systems inherit the security 
vulnerabilities and issues of these technologies (Sarigiannidis et al., 2015). The heterogeneity and the dispersed 
nature of the nodes render traditional intrusion detection systems (IDS) difficult to implement (Fu et al., 2011; 
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Chen et al., 2009). Existing detection systems are not conceived for these problems and there are no universal IDS 
for DDoS in IoT (Kasinathan et al., 2013; Raza et al., 2013). 
Meanwhile, the deep learning (DL) method has been earlier used to provide solutions to many interesting problems 
in the big data field and offers a unique opportunity for DDoS security mechanisms in IoT. Although the use of the 
DL method is primarily restrained to big data, the latest findings on network traffic classification and intrusion 
detection systems in (Diro & Chilamkurti, 2018; Elsaeidy et al., 2019; Javaid et al., 2016; Kang & Kang, 2016; Li 
et al., 2015) show that DL can have new applications in identifying attacks in IoT. The main benefit of DL is its 
ability to extract high-level features, the absence of manual feature engineering, unsupervised pre-training, and 
compression capabilities. These benefits are now encouraging the use of DL in resource constraint networks such 
as IoT (Vincent et al., 2010). In this paper, taking the advantage of the DL, we develop a DDoS attack detection 
model in IoT using a deep Gaussian-Bernoulli restricted Boltzmann machine (DBM). To do so, in section 2, we 
present relevant literature reviews regarding intrusion detection and IoT. The contribution to the knowledge of this 
study - an established blueprint and a deep learning based-model for detecting distributed denial of service attacks 
in IoT considering the peculiarities of IoT systems - is exposed in section 3. Section 4 discusses the system 
implementation, data description, and the experimental environment. Section 5 detailed the results of this work, 
while the last section presents some concluding remarks. 
2. Related Works 
The DL approach was employed in (Li et al., 2015) to detect malicious code in information technology systems, 
where an auto-encoder was used for features extraction and data dimensionality reduction by converting 
complicated high-dimensional data into low dimensional codes with nonlinear mapping. A deep belief network 
(DBN) was used for classification while considering a centralized anomaly-based detection approach. The model 
was simulated using the knowledge discovery in databases cup 99 (KDD-Cup99) dataset and an accuracy of 92.10% 
was obtained. Illustrative results showed that the proposed model performed better than a single DBN. The work 
supports that deep networks are better at identifying cyber-attack than simple machine learning algorithms. 
Another study based on the DL approach was conducted in (Javaid et al., 2016). The authors used sparse 
auto-encoders along with a backpropagation (BP) algorithm for feature extraction following an unsupervised 
approach. They simulated the proposed model using the network socket layer-knowledge discovery in databases 
(NSL-KDD) dataset. The learned features were classified using a softmax regression function. The study 
employed a cross-validation technique based on n-fold for performance evaluation, and the accuracy of the 
developed model was 88.39%. A deep neural network (DNN) based IDS was also adopted in (Kang & Kang, 2016) 
to improve the security of an in-vehicular network. During the simulation phase, sensors placed in the controlled 
area network (CAN) bus were used to analyze the traffic entering and leaving the vehicle. They used a DBNs with 
the conventional stochastic gradient descent algorithm for feature extraction on the in-vehicular network packets. 
Then, DNN was used as a classifier to provide the accuracy of each class to distinguish normal packets from 
hacked ones. Experimental results showed 98% in terms of accuracy and showed that the developed method can 
give a quick response to any attack on the vehicle. 
In Ma et al. (2016), spectral clustering deep neural network (SCDNN) - a combination of spectral clustering (SC) 
and DNN algorithms was proposed. The dataset was first split using cluster centers, as in SC; and similarity 
amongst features was used to measure the distance between data points both in testing and training set. The 
KDD-Cup99, NSL-KDD, and sensor network dataset (SND) were used to test the model. The outcomes showed 
that the SCDNN classifier outperformed back propagation neural network (BPNN), support vector machine 
(SVM), random forest (RF), and Bayes tree models in terms of detection accuracy. Haddadpajouh et al. (2020) 
proposed a multi-kernel support vector machine (SVM) for IoT cloud-edge gateway malware hunting, using the 
grey wolf optimization (GWO) algorithm. In Yadav & Subramanian (2016), a stack of auto-encoders was used to 
study features in the application-layer DDoS (AL-DDoS) attack dataset - an artificial DDoS dataset. To classify 
the input into normal and intrusion traffic, logistic regression was used. The average detection rate and 
false-positive rates were 98.99% and 1.27% respectively. These results were used to benchmark the proposed 
method with the existing ones, such as hidden Markov models (HMM), hierarchical clustering, and random walk 
graph. They concluded that the proposed technique outperformed the existing ones. 
Pang et al., 2021 reviewed the various models that have been employed for anomaly detection while (Li et al., 2020) 
surveyed different random forest models used in IDS with a variety of datasets using different features and classes. 
In Diro & Chilamkurti (2018), a distributed anomaly-based IDS was developed to detect DDoS attacks in IoT 
systems using a DL model for feature extraction and softmax regression for classification. The developed model 
was also simulated using the NSL-KDD dataset. The model achieved 99% in terms of accuracy, while the 
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distributed detection approach was shown to outperform the centralized one. In addition, the results showed that 
deep network-based models were more effective against DDoS attacks than shallow neural networks. However, 
the deep learning model used for feature extraction in the work was not specified. Latif et al. (2020) also proposed 
an approach using convolutional neural networks (CNN) to classify botnet attacks. They further split the dataset 
into four (4) separate parts, the same model was trained and tested on the data separately for binary classification. 
The research in Imamverdiyev & Abdullayeva (2018) proposed a Gaussian-Bernoulli type restricted Boltzmann 
machine (RBM) for detecting DDoS attacks. They used seven additional layers between the visible and the hidden 
layers of the RBM for feature extraction and features classification. They simulated the model using the 
NSL-KDD dataset with Matlab and the detection accuracy was 78%. The results analysis of the developed model 
showed it performed better compared to the other type of RBM. 
Latif et al., 2020 in their work developed a deep random neural network (DRaNN) and they trained the model 
using the UNSW-NB15 dataset. Their model could achieve an accuracy of 99.54%. In Elsaeidy et al. (2019), 
DDoS attack detection for the smart city using an RBMs based smart city intrusion detection system for feature 
extraction was proposed. Four classifier including feed-forward neural network (FFNN), automated FFNN, RF, 
and SVM, were used. Classifiers were selected and trained. The accuracy of the developed method was tested and 
benchmarked using a dataset from a smart water distribution plant. The best accuracy (98%) was achieved with 
SVM as a classifier. The outcomes showed the performance of the developed method in detecting DDoS attacks. 
3. System Model 
The developed model for detecting DDoS attacks in IoT systems is made of the softmax regression for attack 
detection and deep Gaussian-Bernoulli restricted Boltzmann machine (DBM) for feature learning. Fog nodes were 
used to host the developed attack detection system to unload storage and computation from IoT nodes. Parallelly, 
each fog node hosts data training using the DBM. Holdout set validation method was used to build the final model 
with the training dataset for training (70%), validation (10%), and testing (20%). 
3.1 Deep Gaussian-Bernoulli Restricted Boltzmann Machine 
DBM is a stack of RBMs. The first RBM in the stack is a Gaussian-Bernoulli RBM, a type of RBM that handles 
real data and is suitable to the data generated by IoT systems (Elsaeidy et al., 2019). DBM is a generative model 
with symmetrically coupled stochastic units and no-intralayer connections between the units. Connections in the 
deep RBM exist only between units of neighboring layers. The deep RBM learns complex internal representations 
and is effective in resolving IoT network traffic analysis problems. Complex representations can be constructed 
from a large amount of unlabelled IoT network traffic and some labeled sensory data can then be employed to 
fine-tune the model. Typically, a DBM is made of a set of visible units v ϵ {0,1} D and a set of hidden units h ϵ {0,1} 
P. Consider a DBM with two hidden layers {h1, h2} and one visible layer v, the conditional distributions over the 
visible and the two sets of hidden units are given by (Salakhutdinov & Hinton, 2019) 𝑝൫ℎ௝ଵ = 1| 𝒗, ℎଶ, 𝜃൯   = 𝑠𝑖𝑔𝑚(෍ 1𝜎௜ଶ 𝑣௜𝑤௜௝௜ + ෍ ℎ௞ଶ௞ 𝑤௝௞ଵ + 𝑏௝ଵ ,  (1) 

𝑝(ℎ௞ଶ = 1| ℎଵ, 𝜃) = 𝑠𝑖𝑔𝑚(෍ ℎ௝ଵ௝ 𝑤௝௞ଵ + 𝑏௞ଶ),   (2)
𝑝(𝑣௜ = 1| ℎଵ, 𝜃) = 𝑁(෍ ℎ௝ଵ௝ 𝑤௜௝ + 𝑏௜, 𝜎௜ଶ)   (3)

where θ={𝑤௜௝, 𝑤௝௞ଵ , 𝑏௜, 𝑏௝ଵ, 𝑏௞ଶ} are the model parameters; sigma (x) is the sigmoid function ( ଵଵା௘షೣ); 𝑤௜௝ are the 
weights between v and h1; 𝑤௝௞ଵ  the weights between h1 and h2; b is the biases of v, b1 is the biases of h1, b2 is the 
biases of h2 and σi is the standard–deviations of v. N(µ, σi

2) is a probability density of Normal distribution with a 
mean µ a standard deviation σi. 
The learning of the DBM model was done using (4). The first term on the right side is called the data-dependent 
expectation and the second one is called the expectation of the model. Ə 𝑙𝑜𝑔 𝑝(𝑣, 𝜃)Ə𝜃 = 𝐸𝑝(ℎଵ, ℎଶ| 𝑣) [Ə𝐸(𝑣, ℎଵ, ℎଶ|𝜃)Ə𝜃 ] − 𝐸𝑝(𝑣, ℎଵ, ℎଶ) [Ə𝐸(𝑣, ℎଵ, ℎଶ|𝜃)Ə𝜃 ] (4)

The data-dependent expectation and the model's expectation can only be approximated. Because of that, persistent 
contrastive divergence (PCD) through mean-field approximation (Salakhutdinov & Hinton, 2019), (Cho et al., 
2013) was used to estimate the data-dependent expectation and Gibbs sampling through Markov chain Monte 
Carlo method (Salakhutdinov & Hinton, 2019; Cho et al., 2013) was used to approximate the model's expectation. 
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i. Gibbs sampling: States of the neurons in the hidden layers are calculated using probability functions 𝑝൫ℎ௝ଵ = 1| 𝑣, ℎଶ, 𝜃൯ in (1) and 𝑝(ℎ௞ଶ = 1| ℎଵ, 𝜃) in (2). Once these values are available, the other function 𝑝(𝑣௜ = 1| ℎଵ, 𝜃) presented as (3) is used to predict new input values for the visible layer. This process can be 
repeated m–times. In the end, vectors (𝑣෤m, ℎ෨1,m, ℎ෨2,m) which were recreated from original input values (𝑣଴, ℎଶ,଴) 
were obtained. 

ii. PCD: The state of each hidden neuron ℎ௝ଵ and ℎ௞ଶ is calculated using its probability of being active µ௝ଵ and µ௞ଶ respectively. PCD shown in (7) - (9) was then used along with the vectors (𝑣෤m, ℎ෨1,m, ℎ෨2,m) obtained at the 
Gibbs sampling stage to update parameters. µ௝ଵ =  𝑠𝑖𝑔𝑚(෍ 1𝜎௜ଶ 𝑣௜𝑤௜௝௜ + ෍ ℎ௞ଶ௞ 𝑤௝௞ଵ + 𝑏௝ଵ (5)

µ௞ଶ =  𝑠𝑖𝑔𝑚(෍ ℎ௝ଵ௝ 𝑤௝௞ଵ + 𝑏௞ଶ) (6)

𝛥𝑤௜௝ =  𝛼(1𝑁 ෍ 𝑣௡ே
௡ୀଵ (µଵ,௡)் − 1𝑀 ෍ 𝑣෤ଵ,௠ெ

௠ୀଵ ൫ℎ෨ଵ,௠൯்) (9) (7)

𝛥𝑤௝௞ଵ =  𝛼(1𝑁 ෍ µଵ,௡ே
௡ୀଵ (µଶ,௡)் − 1𝑀 ෍ ℎ෨ଵ,௠ெ

௠ୀଵ ൫ℎ෨ଶ,௠൯்) (8)𝜃௡௘௪ = 𝜃௢௟ௗ + 𝛥𝜃 (9)
To initialize the parameters of the DBM, a stack of two RBMs were trained on the training data and its parameters 
were used to initialize the parameters of the three-layer DBM during the training process (Salakhutdinov & Hinton, 
2019; Cho et al., 2013). The overall learning procedure of the DBM is shown in Algorithm 1.  
Algorithm 1. The training procedure of the DBM 

1) Input: Training set {𝑣}௡ୀଵே , 𝑛umber of Markov particles M, Iterations m 
2) Output: A trained DBM model with parameters {𝑤௜௝, 𝑤௝௞ଵ , 𝑏௜, 𝑏௝ଵ, 𝑏௞ଶ}. 

3) Use  {𝑣}௡ୀଵே  to pre-train the DBM, and get the initial parameters of DBM {𝑤௜௝, 𝑤௝௞ଵ , 𝑏௜, 𝑏௝ଵ, 𝑏௞ଶ}. 

4) for ite=0 to m do 
5) For each training sample vn, use mean field approach (Equations 5 and 6) to get the variational parameters 

µn.  
6) For each Gibbs sampling step, use equations 1, 2, and 3 repeatedly to obtain the state (𝑣෤m, ℎ෨1,m, ℎ෨2,m)  
7) Update the parameters of DBM with PCD using equations 7, 8 and 9 
8) end 

3.2 Softmax Regression 
The softmax regression is mathematically defined in (10) and was used as a classifier. 

ɸsoftmax (𝑧(௜)) =  𝑝(𝑦 = 𝑗|𝑧(௜)) = ௘೥(೔)
∑ ௘೥ೖ(೔)ೖೕసబ ,  (10)

given that z = 𝑤ଵ𝑥ଵ + ... + 𝑤௠𝑥௠ + b = ∑ 𝑤௟௠௟ୀଵ 𝑥௟ + 𝑏 =  𝑤்𝑥 + 𝑏, where w the weight vector. The feature 
vector of one training sample is represented as x while b is known as the bias unit. The SoftMax function computes 
the probability that the training sample x(i) belongs to class j given the weight and net input z(i). The probability 𝑝(𝑦 = 𝑗|𝑥(௜);  𝑤௝) for each class label in j=1,..., k was then computed. 

4. Model Implementation 
Next, we provide the details of the system implementation, data description, and presented the experimental 
environment. 
4.1 System Implementation 
We deployed sniffers in the fog nodes and gateways’ network. These monitor and gather the information 
exchanged amongst nodes. Since an important quantity of data can be extracted from packets, directly processing 
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it might decrease the performance of the DDoS attack detection system and can be resource-consuming. 
Therefore, the collected network traffic was used to feed a data pre-processing module, which included feature 
transformation and normalization. These operations entailed, amongst others, the inspection and selection of 
important features from the large-scale data, and the conversion of data into numeric features. The output of the 
pre-processing was used to train and develop the DBM for DDoS attack detection in the IoT environment. 
Finally, the SoftMax regression was used to classify traffics as “normal” or “attack”. 
4.2 Data Description 
The NSL-KDD (Tavallaee et al., 2009) dataset which is a fundamental dataset for the evaluation of DDoS IDS 
was used to benchmark the developed model. The dataset involved normal traffics and attack traffic, including 
DoS, probing, user-to-root (U2R), and root-to-local (R2L) as described in Table 1. 
Table 1. NSL-KDD distribution 

Traffic                                       Training               Test 
Normal  67343 9711 

 
Attack 

DoS 
U2R 
R2L 
Probe 

45927 7458 
52 67 
995 2887 
11656 2421 

Total  125973 22544 
The NSL-KDD dataset has 41 features (03 are nominal, 04 are binary, and the remaining 34 are continuous). We 
labeled the features as normal or a specific type of attack. The training data contained 23 traffic classes (22 
attacks and 01 normal) and the test data contained 38 traffic classes (21 attacks from the training data, 16 novel 
attacks, and 01 normal). We also divided the attacks into four categories (DoS, Probing, U2R, and R2L) 
according to their purpose. 
4.3 Data Pre-Processing 
Before training the model, features that an algorithm cannot immediately process were encoded into discrete 
features using a one-hot-encoding (1-of-N) technique. The one-hot-encoding is known as the method of splitting 
the column containing numerical categorical data into many columns, depending on the number of categories 
present in that column. Each column contains “0” or “1” which is corresponding to the column it has been placed. 
This is accomplished using the OneHotEncoder Class of the Python library for data pre-processing Scikit-learn. 
Columns that were categorical and converted to binary are protocol_type (3 categories), service (70 categories), 
flag (11 categories). Because of encoding, 122 input features were obtained. The obtained dataset was scaled and 
centered using the StandardScaler Class of Scikit-learn library to avoid features with large values that may weigh 
too much in the results. 
4.4 Experimental Environment 
We trained the multilayer RBM on a normalized dataset. During the training, labels of the dataset were not used. 
For the simulation, 2-classes (normal vs attack) and 5-classes (normal, DoS (Denial of Service attacks), Probe, 
R2L (Root to Local attacks), and U2R (User to Root attack) were considered. After hyper-parameter 
optimizations, the model used 122 input features, 200 first layer neurons, 100-second layer neurons, and the last 
SoftMax layer with neurons equal to the number of classes. To train the network, 3 epochs were used.  
We carried the experimental aspect of this study using Ubuntu x86 18.04.3 LTS installed on an HP-Pavillon-Dv6 
with 6 GB memory, processor Intel® Core™ i5-2450M CPU @ 2.50GHz x 4. The PC had a graphics card 
Intel® Sandybridge Mobile with 4GB available. The model was simulated using the Integrated Development 
Environment (IDE) Spyder 3.3.3 under Anaconda 4.7.10 version 2019.03 installed with Python 3.7.3 version, 
SciPy library 1.2.1, Keras 2.2.4, and TensorFlow 1.14.0 backend. Scikit-learn 0.20.3, Pandas 0.24.2, NumPy 
1.16.2, and Matplotlib 3.0.3 libraries were all installed to provide a robust simulation environment. 
4.5 Evaluation Method 
Evaluation of the performance of the developed model was carried out using accuracy, precision (P), recall (R), 
F-measure, and Throughput. The mentioned performance criteria were computed as follows: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁                                                                     (11) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃                                                                                            (12) 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁                                                                                                  (13) 

       𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  ଶ.௉.ோ௉ାோ                                                                                                (14) 

Where TP represents true positive and is defined as the case where the network attack types are correctly 
distinguished, TN represents the true negative, defined as cases where normal network data were correctly 
classified as normal. Similarly, FN represents a false negative defined as the case where an attack was classified 
as normal dataflow, while FP represents a false positive defined as cases where normal cases were classified as 
attacks.  
Accuracy hence shows the overall correct detection accuracy of the dataset, while precision denotes the ratio of 
correctly detected attacks to total detected attacks. Recall signifies the degree of attacks that were correctly 
detected among all cases classified as attacks. Finally, the weighted average of Precision and Recall was 
captured by the F-measure. A good performance is indicated by higher accuracy and recall. 
5. Results 
In this subsection, we present the result of the proposed model. We first present the performance of the system 
using the selected evaluation methods which were followed by the comparative analysis. 
5.1 Performance Evaluation 
Table 3 shows the effectiveness of the DBM based on various metrics. Thus, the accuracy of the DBM in 
classifying traffic records as an attack or normal was 93.52%. Precision, Recall, and F-measure in the same 
context were 93%. For the classification of network traffics as “Normal” and four different attack categories 
(probe, U2R, R2L, DoS), the accuracy of the DBM was 91.69%.  
Table 2. Evaluating the effectiveness of the methods  

Class Accuracy Precision Recall F-measure 
2-classes (Normal and attack) 93.52% 93% 93% 93% 
5-classes (Normal and 4 attacks) 91.69% 92% 92% 91% 

In the same scenario, the precision and the recall were 92% and the F-measure was 91%. It was concluded that 
the DBM efficiently detected DDoS attacks in the IoT environment. Figure 1 and Figure 2 visually show the 
confusion matrices of the two different classification with details over the reparation of the TP, TN, FP, and FN 
in each situation. The occurrence of DoS, U2R, R2L, probe, normal classes, and the ability of the developed 
DBM to detect these points respectively for each type of classification is also pictured in Figure 1 and Figure 2. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. 2-classes (Normal and Attack) 
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Figure 2. Confusion matrix: 5-classes (1 Normal and 4 Attacks: DoS, Probe, U2R, R2L) 
Experiments related to the accuracy dynamics with respect to the number of epochs and the training time were 
also conducted (as shown in Figure 3, Figure 4, and Figure 5). Based on the number of epochs, the detection 
accuracy dynamics of the DBM are depicted in Figure 3. As illustrated, the DBM's DDoS attack detection 
accuracy gradually decreases as the number of epochs increases from 30 to 100. But the DBM's DoS attack 
detection accuracy gradually increases as the number of epochs increases from 3 to 30. As seen from Figure 3, 
when the number of iterations over the data decreases, the model detects DDoS attacks with high precision, but 
as the number of iterations increases, the accuracy of the model for DDoS attacks detection gradually falls. 
Figure 4 depicts the time consumption of the training with respect to the number of epochs. As given, the time 
consumption increases as the number of epochs increase from 3 to 30. Starting from 30 epochs, the computation 
time did not evolve anymore as the epoch increased. This, as well as the observations mentioned above, are due 
to the fact that the best model's parameters were obtained around this point and the system stopped learning. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Detection rate dynamics of the DBM by number of epochs 

 
 
 



mas.ccsenet.org Modern Applied Science Vol. 16, No. 2; 2022 

19 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Epoch rate dynamics of the DBM over time consumption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Accuracy dynamics as a function of Epochs and Time consumption 

5.2 Results of Comparative Analysis  
The performance of the proposed DBM for detecting DDoS attacks is evaluated using knowledge discovery in 
databases cup 99 (KDDCUP99) (Tavallaee et al., 2009) dataset, which is the detection of another DDoS attack 
benchmark dataset different from the NSL-KDD dataset used during the training of the proposed model. We 
passed kDDCUP99 to the developed model to observe and comparing performances. In Table 4 and Table 5, 
comparative analysis of the proposed DBM results on the NSL-KDD dataset with existing methods using 
NSL-KDD as a benchmark dataset on one hand and the proposed DBM results on the KDDCUP99 dataset with 
existing methods using KDDCUP99 as benchmark dataset, on the other hand, is described. The proposed DBM 
results on NSL-KDD outperform the results of the methods in (Javaid et al., 2016) and (Imamverdiyev & 
Abdullayeva, 2018). The accuracy of the proposed DBM was 93.52% while the model in (Imamverdiyev & 
Abdullayeva, 2018) had an accuracy of 78%, and (Javaid et al., 2016) had an accuracy of 88.39%. The proposed 
DBM results on KDDCUP99 performed better than the results of the method in (Li et al., 2015). The model in 
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(Sarigiannidis et al., 2015) achieved better performance on NSL-KDD than the developed model though the 
details of the DL model adopted in (Sarigiannidis et al., 2015) were not mentioned. 
Table 3. Evaluation of the effectiveness of the proposed model on the NSL-KDD dataset with existing 

Author Method Accuracy on NSL-KDD
[12] Sparse autoencoder + Softmax 88.39% 
[18] Deep Restricted Boltzmann Machine 78% 
[10] Deep networks + Softmax 99% 
The model developed in this study DBM + Softmax 93.52% 

 
Table 4. Evaluation of the effectiveness of the proposed model on KDDCUP99 dataset with existing 

Author Method Accuracy on KDDCUP99 
[14] AutoEncoder + DBN 92.10% 
Model developed in this study DBM + Softmax 97.95% 

6. Conclusion and Future Work 
Internet of Things (IoT) is ubiquitous and providing adequate security to IoT is inevitable. This study explored 
the ability of Deep Learning approaches to detect DDoS attacks in IoT networks with regard to IoT peculiarities. 
In particular, we investigated it whether applying fog computing principles could make it possible to employ 
Deep Learning algorithms in IoT. Thus, a deep learning based-model for detecting distributed denial of service 
attacks in the Internet of Things was developed and hosted on fog nodes. The results of the simulation 
experiments showed that the proposed DBM efficiently detects DDoS attacks and outperforms previously 
reported works. This study contributes to knowledge by establishing a blueprint and a deep learning based-model 
for detecting distributed denial of service attacks in IoT. 
The developed IDS with DBM for DDoS in IoT evaluation was limited to two different datasets. More datasets 
could be used to evaluate the proposed model in future works. Moreover, more improvement in the accuracy of 
the DBM by fine-tuning its parameters can be considered. Experimenting with the behavior of the developed 
model in a network with more nodes can be attempted. The developed model was also limited to DDoS attacks. 
It may also be expanded to consider more cybersecurity attacks such as Wormhole attacks, Sinkhole attacks, 
Sybil attacks, Selective Forwarding Attacks, etc all of which jeopardize the existence of IoT. 
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