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Abstract

The maximum flow problem is also one of the highly regarded problems in the field of optimization theory in
which the objective is to find a feasible flow through a flow network that obtains the maximum possible flow
rate from source to sink. The literature demonstrates that different techniques have been developed in the past to
handle the maximum amount of flow that the network can handle. The Ford-Fulkerson algorithm and Dinic's
Algorithm are the two major algorithms for solving these types of problems. Also, the Max-Flow Min-Cut
Theorem, the Scaling Algorithm, and the Push-relabel maximum flow algorithm are the most acceptable
methods for finding the maximum flows in a flow network. In this novel approach, the paper develops an
alternative method of finding the maximum flow between the source and target nodes of a network based on the
"max-flow." Also, a new algorithmic approach to solving the transportation problem (minimizing the
transportation cost) is based upon the new maximum flow algorithm. It is also to be noticed that this method
requires a minimum number of iterations to achieve optimality. This study's algorithmic approach is less
complicated than the well-known meta-heuristic algorithms in the literature.

Keywords: maximum flow, network flow models, transportation problem, initial feasible solution, optimal
solution

1. Introduction

The flow network is a directed graph where V is an n-set of nodes that get a flow and E is an m-set of directed
edges that have a capacity. The proportion of flow on an edge can't surpass the limit of the edge. In these
situations, it is normally needed to move the maximum amount of flow from a beginning point s (called the
source) to a terminal point t (called the sink) (Dash, 2019; Dimitri, 1998). We are now interested in related
problems that are called maximum flow problems. Each has a nonnegative capacity (weight or time),
determining the maximum number of flow units that can pass along the arc.

The network flow problem is one of the most fundamental problems in operations research. Many practical
problems can be expressed as network flow problems. Such as modeling traffic in a road system, fluid in pipes,
computer networks, current in an electrical circuit, etc. Networks can be broadly classified into two types:

i. Ordinary network flow models require flow protection on all arcs: the measure of flow entering an
arc equals the measure of flow leaving the arc.

ii. Generalized network flow models: Generalized networks allow modeling of conditions including
inefficient or super-efficient flows as well as flow transformation. For example, transportation
problems, assignment problems, maximum value flow, minimum cost flow problems, and shortest
path problems, etc.

During the Cold War, the US Air Force at that time was very interested in the Soviet train networks. In these
reports, the Air Force collected enough information about the train network that they were able to determine how
resources could be transported from the Soviet Union to Europe. And what needed to be done to destroy this
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movement of resources. This problem leads to the concept of a flow network. Aviation-based armed forces
scientists T. E. Harris and F. S. Ross (1956) published a classified report considering the rail network that linked
the Soviet Union's satellites. Harris and Ross, studying the rail network, modeled it as a graph with 44 vertices
and 105 edges, representing joins between those locales in the rail network. The system unraveling technique is
based on the Ford-Fulkerson max-stream calculation. The network unraveling method is based on the
Ford-Fulkerson max-flow algorithm. Ford and Fulkerson (1962) defined flows as an area of operations research.
This concept was implemented by many scientists, statisticians, mathematicians, and engineers.

In the previous few years, different types of algorithms for solving this problem have been proposed, for
example, the network unraveling technique based on the Ford-Fulkerson max-flow algorithm (1956), A Parallel
Ford-Fulkerson Algorithm For Maximum Flow Problem (Harris and Ross, 1956), Maximum Flow Problem
(Ahuja, 1989; Karzanova, 1974). The Maximum Flow Network Interdiction Problem (Douglas, 2010), etc. In
like manner, transportation problems have been generally considered in Operation Research. It is one of the
fundamental problems of the network flow problem (Dinice, 1970; Elias et al., 1956; Fulkerson & Dantzig, 1955),
which is normally used to minimize the transportation cost for ventures with a couple of sources to a couple of
objectives.

The fundamental TP was first proposed by F. L. Hitchcock in 1941, and then independently by T. C. Koopmans
in 1947, after which the logical solution procedures from the simplex algorithm were further developed
(Kulkarni & Datar, 2010; Mallick et al., 2016), primarily by Dantzig and then by Charnes et al. (1953). The
Simplex Method isn't reasonable for the transportation problem, especially for large scale transportation
problems, in view of the interesting structure of the model by charges and Cooper (1954) who made the Stepping
Stone method. The literature witnesses that different techniques (Ahmedat et al., 2016-2017; Babu at el., 2013;
Deshmukh, 2012; Ekanayake, 2020-2021; Girmay, 2013; Hitchcock, 1941; Khan, 2015; Kulkarni, 2010;
Pannerselvam, 2010) have been developed in the past to solve the transportation problem. In this study, we
examine a novel approach for solving the maximum-flow problems and TP problems (TPMFP), which is based
on the use of the Predecessor cost matrix. The proposed algorithm is basic, straightforward, and simple to
actualize. This method is also to be noticed that, requires a minimum number of steps to reach optimality as
compare the obtained results with the regular methods. Finally, this procedure is outlined with some numerical
examples. We present a few new effective algorithms for the summarized maximum flow problem.

2. The Key Definitions

Definition 1 (Edmonds, 1972; Fulkerson, 1955). A flow network is a directed graph G = (V, E), with a source s
€ V,asinkt € V,and each edge (i,j) € E has a non-negative capacity c(i, j).

Definition 2 (Ford, 1962). Given a flow network G = (V, E), a flow in G is described by a function
f:V xV —> R Satisfying
1. Capacity constraint: 0 < f(i,j) < c¢(i,j) foreach i,j € V.
il. Skew —symmetry (Anti symmetry): f(i,j) = —f(j,i) forall i,j € V.
iii. Flow conservation:
Foreach i,j €V, then Yiey f(i,)) = Xjev f(, D)
Flow into j Flow out of j
Flow value |f| = Xiey f(i, k) — Xjev f(k, D)
Definition 3 (Dimitri, 1998). Predecessor cost matrix

The algorithm represents an n- node network as a square matrix with  n- rows and n- columns. Entry (i,j) of
the matrix gives the weight wjjfrom node i to node j.

That is, W = (wy), where,

0 ifi =
w;j = The weight of directed edge (i,j) if i #jand (i,j) €E
o if itjand (i,j)¢E

Definition 4 (Dimitri, 1998). Flow Capacity Update. (Augmenting path)

We are given a weighted, directed graph G = (V,E) .There is a weight of path (P) from s to ¢ for all
edges(i,j) € P,sub graphof G' = (V',E"); V'SV and E' € F s.t.
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i. E’ s the rechargeable edges.

ii. G’ isthe path from s to ¢

1. For all v € V'; the unique direct path from s to ¢.

iv.  Max flow-carrying path P has been found from s to # (w*;; > 0 for every arc (i,j) on the path), and

ws ™ = Min{w*;; |: (i,j) on P}, where m is number of iteration.

v. The capacity constraints are satisfied
a. If(i,j) € P, then w(i,j) —wg, (™
b. Otherwise, (i,j) € P is from the original flow.

Definition 5.

Network flow algorithms depend on the idea of augmenting paths (predecessor cost matrix) and more than once
find a path of positive capacity from s to ¢ and add it to the flow. It tends to be demonstrated that the flow
through a network is optimal if and only if it contains no augmenting paths.

Definition 6 (Dimitri, 1998).

The value of a Max flow is defined as [w| = X5 ¢)er w, ™ which is the total amount out of the source (also equal
the total amount into the sink).

3. Mathematical Model

3.1 Max Flow

The problem can be formulated as follows;
Maximize vV
Subject to;

Vif i=s
inj—Zxki= -V lf i=t
I k 0 Otherwise
O0<xjj<wu;i=12.m andj=123..n
We assume that there is no arc from t to s and u;; = o ifarc i to j has unlimited capacity.

3.1.1 Predecessor Cost Matrix for Max Flow

Table 1. Predecessor cost matrix for Max Flow

A B C L M N
A 0 au age .- Aart Agm %an
B ape 0 ape ... Ay Apm Apn
C Aeqg ep 0 ... Aoy Cem %en
L Qg Ay Ape o 0 auy apy
M Uma Com Ame - A 0 amn
N Qna Apn Ape -eee Apy Ay O

Where

o = {6;real number
U 7| oo;Otherwise

For i,j = A,B,C......L,M, N.
3.2 Transportation Problem (Rayand & Hosain, 2007)
The total transportation cost is
Minimize};i2 1 ¥7q X;;C;
Subject to the constraints
i. Z’]:lXU =q;, i=12,...,m

1. {ile] =b], ]= 1,2, ., n and
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1ii. X;j = 0 for ali=12,.,mand j=12,..,n
Note that here the sum of the supplies equals the sum of the demands. i.e. YiZ; @; = X7, b;. Such problems are
called balanced transportation problems and otherwise, i.e. Xil;a; #Xj-1bj, known as unbalanced

transportation problems.

i Xilia; >Xjob;

i, X a; <XFo b
Introduce a dummy origin in the transportation table; the cost associated with this origin is set equal to zero. The
availability at this origin is: Y%, a; — Xj=1 bj = 0.

3.2.1 Predecessor Cost Matrix for TP

Table 2. Predecessor cost matrix for TP

S, S; o Sma S D, D, ... D, D,

S1 0 o © o0 Ci1 Ciz Cin-1) Cin a,
S, 0 o 00 Cy1 Cy, Cotn-1) Con a,
Sm-1 oo oo 0 00 Com-11 Cm-12 -+ Cm-pin-1)  Cm-1n Am-1
S o o o 0 Cm1 Cmz Cnn-1) Cnn an,
D, C1a Ca1 Con-1)1 Cm1 0 © © b b,
D, Ciz Ca2 Can-1)2 Cmz o 0 © o0 b,
D,y Cin-1y Com-n) Con-1yn-1) Cm-ny(n-1y @ 0 0 00 by 1
Dn Cln CZn C(m—l)n C(m—l)n © © © 0 bn
b, b, b,_1 b, a; a, A1 an,

4. Illustration of the Proposed Algorithm

A wide range of decision problems that can be modeled as network optimization problems and solved efficiently
and effectively can be solved using network models. Some of these decision problems, such as transportation or
commodity flow, are physical in nature. On the other hand, many network problems, such as the critical path
activity network in project management, are abstract representations of processes or activities. Researchers have
improved a number of algorithms for solving maximal-flow problems over the last fifty years. In this algorithm,
we presented a new algorithm for calculating the maximum flow in a network. The new maximum flow algorithm
also serves as the foundation for a new algorithmic approach to solving the transportation problem (minimizing
transportation costs).

4.1 New Algorithm
Step 1. Construct the Predecessor cost matrix
Step 2. Start with 1*' row (source nodes) and select any weighted node £ with w*g, > 0.

Step 3. Next Select k™ row and select any another weighted node i (w*y;), after that select i row and select any
weighted node j (w*;;), next select j™ row and select any weighted node j (W*;), and label every node h with
w”jp > 0 until either sink # has been labeled (w* ). (There is a path (P) from s to 7)

Step 4. Find the max flow wy ™ = Min{w";; |: (i, ) on P}

Step 5. Flow is updated (Definition 4)

Step 6. If the w*y, = 0(k = 2,3,4,,,,n) or node k with w*; = 0, yes go to Step 7, no go to Step 3.
Step 7. Then terminate.

4.2 Available Algorithm (Dash at el., 2019)

Proposed Algorithm

The proposed algorithm is given below:

Step 1: first initialize the flow f to 0, for each edge (u, v) € E [G],

Step2: f(u, v)=f(v,u)=0
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Step 3: Calculate maximum capacity C in the flow network and then calculate D = 11!°911¢
Step 4: while D > 1

Step 5: If there exists an augmenting path p from s to t in the residual network Gy with capacity at least D the select
it and go to step 6; otherwise go to step 9.

Step6: set ¢e(p) = min {c¢ (u, v):(u, v)is in p}

Step 7: For each (u, v) €p,if(u,v) € Esetf(u,v)=1(u, v) + ¢¢(p) else f (u, v) =-f(v,u)

Ste p 8: Calculate the flow value.

Step 9: D = %

Step10: The flow is maximum

4.3 New Algorithm for TP

Step-1. Construct a Predecessor Transportation Cost Table (PTCT) from the given transportation problem.
Step-2. Ensure whether the PTCT is balanced or not, if not, make it balanced and complete PTCT of order m x n.

n
Yieiai _ Zri=1bj
m+n—1 m+n-—1

Step 3. Calculate, @ =

Step 4. Distinguish the source or Demand cell close @.

Step 5. @ cell placed at the starting nodes with the minimum C;; value of the PTCT to make the first allocation
Step 6. Next utilizing the above Algorithm and goes to head.

Step 7. Then terminate and calculate the total transportation cost

5. A Comparison of the Methods

5.1 Comparative Assessment with Max Flow

A numerical example has been unraveled for finding the maximum value of a Maximum flow problem by utilizing
proposed algorithm which is given underneath (Dash et al., 2019).

Consider a pipeline system in an Azimpur colony to supply gas in different zones of an Azimpur Colony of Dhaka
in the Bangladesh. The pipeline has a communicated capacity in per unit per hour between any two zones which
given as a maximum flow at which gas can flow by the pipe between those two zones. Presently, Consider I need to
supply gas from the source zone to the sink zone, assume the source zone is say A and the sink zone is F and gas
passes into 4 others zones before getting from source to sink. Suppose B, C, D, E, are of these 4 zones and pipeline
between any two zones has indicated capacity. Demonstrates the input information's which have given to the
problem talked above in the following Table 1

Table 3. Indicate capacities of each pipeline between two zones
Source part A A B B D D E E
Destination part B ¢ D C E F B F
Capacity(Gallons/hour) 35 10 14 40 19 20 9 25

Calculate the maximum amount of gas which can flow from A to F.
Step 1.

Table 4. Predecessor cost matrix

A B C D E F A B C D E F
A 0 35 oo 10 o0 o A 0 21 oo 10 o0 o
B oo 0 14 40 o oo B 14 0 0 40 o0 o
C o0 o 0 o 19 20 C o 14 0 o 19 6
D oo o o 0 35 o D o o o 0 35 o
E o 9 o o0 0 25 E o 9 o o0 0 25
F o o oo oo oo 0 F 00 oo 14 o o0 (

war ™ = Min{w*;; |:(i,j) on P } =Min {35, 14, 20}=14 path A-B-C-F
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Step 2.
Table 5. Predecessor cost matrix
A B C D E F A B C D E F
A 0 21 o 10 o0 o A 0 0 o 10 o0 o
B 14 0 0 40 o0 oo B 14421 0 0 19 o0 o
C o 14 0 o 19 6 C 0 14 0 o 19 6
D oo o o 0 35 o D 0o 21 o 0 16 o
E o 9 o o 0 25 E 00 9 o 21 0 4
F o o 14 o© o 0 F o © 14 o 21 0
war ™ = Min{w*;; |: (i,j) on P } =Min {21, 40, 35, 25}=21 path A-B-D-E-F
Step 3.
Table 6. Predecessor cost matrix
A B C D E F A B cC D E F
A s 0 0 o 10 o oo A s 0 o0 6 o) o
B 1 14421 0 0 19 o o B 1 14421 0 0 19 o o)
c 2 0 14 0 o 19 6 c 2 0 14 0 0 19 6
D 3 00 21 o0 O 16 oo D 3 00 21+4 o 0 12 o0
E 4 o 9 o 21 0 4 E 4 o 9 o 2144 0 0
F t o) o 14 o 21 0 F t o0 o 14 o0 21+4 0

ws ™ = Min{w*;; |: (i,j) on P } =Min {10,16,4}=4 path A-D-E-F

Now we construct the following table to compare different algorithms with our proposed algorithm

lw| =

(s,t)ev

we ™ =14 + 21+ 4 =39

Table 7. Assessment of the residual obtained by different methods

Name of Algorithm

Number of Iterations

Number of augmentation

Ford -Fulkerson

Edmonds-Karp

Md.Al-Amin Khan
Faruque Ahmed
Modified Edmonds-Karp

Protima Dash et.al. Method

New Method

4
3
4
3
3
2

2

4

W W W W W W

By implies new algorithm yields better outcomes that will be resulted in maximum flow in a network flow problem
involving a fewer number of iterations just as fewer augmentations of this we needed to propose.

5.2 Comparative Assessment with TP

This section gives execution relationships over the distinctive eminent methods — NWCR, LCM, VAM, New
method (TPMFP) and to find the optimal result by the solutions obtained from disparate problems. Comparable
assessments are performed and illustrated in the immediately following sections. The detailed representation of

the numerical information of Table is given in Appendix A.
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Table 8. A comparative results obtained by NWCM, LCM, VAM, IAM and New method for the FIVE
unbalance transportation problem.

Problem chosen from TCIFS Optimal Percentage of Deviation from optimal solution
Ahmed et al. (Ips) result (0.)
NWCM LCM VAM 1AM TPMFP NWCM LCM VAM 1AM TPMFP

UBTP-1. 1,815 1,185 1,745 1,695 1,655 1,650 9.69 1424 575 2.72 0.30
UBTP-2. 18,800 8,800 8,350 8,400 7,750 7,750 142.6 13.54  7.74 8.38 0.00
UBTP-3. 14,725 14,625 13,225 13,075 12,475 2,475 18.03 17.23  6.01 4.80 0.00
UBTP-4. 13,100 9,800 9,200 9,200 9,200 9,200 42.39 6.52 0.00 0.00 0.00
UBTP-5. 8,150 6,450 6,000 5,850 5,600 5,600 45.53 15.17  7.14 4.46 0.00

The TPMFP method's efficiency was also tested by solving five benchmark problems, and performance

comparisons between the various well-known methods (NWCM, LCM, VAM, and IAM) are provided in Table 8.

It is clear that the TPMFP method produces a comparatively more appealing result. It can also be demonstrated
that the TPMFP provides a motivating initial feasible solution (IFS) by requiring a minimum number of
iterations. Table 8 is depicted as a bar graph in Figure 1 and as a line graph in Figure 2 to demonstrate the
significance of the proposed method, TPMFP, over other considered existing methods in terms of transportation
cost, IFS, and percentage deviation (PD), respectively:

Unbalance transportation problem

20,000
E 18,000
9 16,000
£ 14,000
-2 12,000
£ 10000
S 8000
g 6,000
g 4000
= 2,000
0

NWCM LCM VAM IAM TPMFP Optimal

mUBTP-1. 1,815 1,185 1,745 1,695 1,655 1,650

mUBTP-2.| 18,800 8,800 8,350 8,400 7,750 7,750

UBTP-3. 14,725 14,625 13,225 13,075 12,475 12,475

UBTP-4. 13,100 9,800 9,200 9,200 9,200 9,200

= UBTP-5. 8,150 6,450 6,000 5,850 5,600 5,600

Figure 1. Comparative study of the result obtained by NWCM, LCM, VAM, IAM, and TPMFP

Line graph presented in Figure 2 indicates PD of the NWCM, LCM, VAM, IAM and TPMFP from the minimal
total cost solution obtained in Table 8:

Deviation Chart

160
140
120
100
Q
o 80
60
40
20
0 —
NWCM LCM VAM 1AM TPMFP
e JBTP-1. 9.69 14.24 5.75 2.72 03
o= UBTP-2. 142.6 13.54 7.74 8.38 0
UBTP-3. 18.03 17.23 6.01 4.8 0
UBTP-4. 42.39 6.52 0 0 0
e JBTP-5. 45.53 15.17 7.14 4.46 0

Figure 2. PD of the results obtained by NWCM, LCM, VAM, IAM, and TPMFP
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According to Table 8 and Figures 1 and 2, TPMFP is the best IFS, almost identical to the optimal solution (OS) in
every case, obtained by the MODI method for TPs, and better than the solution obtained by the other existing
methods such as NWCM, LCM, VAM, and IAM. The proposed TPMFP achieves more efficient IFS for a diverse
set of TPs in fewer iterations.

The next section gives execution relationships for the distinctive eminent methods—NWCR, LCM, VAM, and
the new method—and how to find the best result from the solutions obtained from disparate problems.
Comparable assessments are performed and illustrated in the immediately following sections. The detailed
representation of the numerical information in the table is given in Appendix B.

Table 9. A comparative results obtained by NWCM, LCM, VAM, IAM and New method for the FIVE balance
transportation problem

Problem TCIFS(Ifs) Percentage of Deviation from optimal
chosen [2] solution

NWCM LCM VAM IAM TPMFP Optimal NWCM LCM VAM IAM TPMFP
BTP.1 1,500 1,450 1,500 1,390 1,390 1,390 0.08 0.04 0.08 0.00 0.00
BTP.2 226 156 156 156 156 156 449 0.00 0.00 0.00 0.00
BTP.3 234 191 187 186 183 183 27.9 437 218 1.64 0.00
BTP.4 4,285 2,455 2,310 2,365 2,330 2,170 97.5 13.13 645 898 7.37
BTP.5 3,180 2,080 1,930 1,900 1,900 1,900 67.36 947 1.57 0.00 0.00

As shown in Table 9, the proposed TPMFP method achieves a more promising IFS than the traditional algorithms
considered in this study, as shown in Figure 3 and 4. Table 6 is depicted in Figure 3 as a bar graph and in Figure 4
as a line graph to demonstrate the significance of the proposed method, NEWA, in terms of transportation cost and
IFS and PD, respectively:

Balance Transportation Problem

I.II_|I_|l|I_|I_|

NWCM LCM VAM IAM TPMFP Optimal
1,500 1,450 1,500 1,390 1,390 1,390
226 156 156 156 156 156
234 191 187 186 183 183
4,285 2,455 2,310 2,365 2,330 2,170
3,180 2,080 1,930 1,900 1,900 1,900

Transportation Cost

mBTP.5

Figure 3. Comparative study of the result obtained by NWCM, LCM, VAM, IAM, and TPMFP
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Deviation Chart

120
100
80
o 60
40
20
NWCM | LCM VAM IAM TPMFP

e BTP.1 0.08 0.04 0.08 0 0

BTP.2 449 0 0 0 0

BTP.3 27.9 437 2.18 1.64 0

BTP.4 97.5 13.13 6.45 8.98 7.37
——BTP.5  67.36 9.47 1.57 0 0

Figure 4. PD of the results obtained by NWCM, LCM, VAM, IAM, and TPMFP

According to Table 9, Figures 3 and 4, TPMFP is the best IFS, almost identical to the OS in all but one case in
reaching the IFS, obtained by the MODI method for TPs, and better than the solution obtained by the other
existing methods such as NWCM, LCM, VAM, and IAM. The proposed TPMFP achieves more efficient IFS for
a diverse set of TPs in fewer iterations.

This section also compares the performance of various well-known methods (NWC, LCM, VAM, 1AM, and
TPMFP) developed using maximization TPs. The sections that follow perform and illustrate comparative
assessments. Table 10 contains a detailed representation of the numerical data. Appendix C includes detailed data
representations of the following five problems:

Table 10. Performance measure NEWA over NWCM, LCM, VAM, and IAM

Problem TCIFS(Ifs) Optimal Percentage of Deviation from optimal
chosen from Result(0,) solution

Ahmed et al NWCM LCM VAM IAM TPMFP NWCM LCM VAM IAM TPMFP
MTP-1. 137 232 232 232 232 232 -40.9 0.00 0.00 0.00 0.00
MTP-2. 468 654 662 662 662 662 -29.30 -1.20 0.00 0.00 0.00
MTP-3. 5,570 8.020 8,000 8.020 8,020 8,020 -30.5 0.00 -0.24 0.00 0.00
MTP-4. 36,795 46,760 46,760 46,700 46.700 46,760 -21.31 0.00 0.00 -0.12 -0.12
MTP-5. 28,150 33,800 34,050 34,050 34,050 34,050 -17.32 -0.73  0.00 0.00 0.00

The TPMFP method's efficiency has also been tested by solving five benchmark problems and comparing
performance across various well-known methods (NWCM, LCM, VAM, and IAM) in Table 10, where it is
discovered that the TPMFP method yields a comparatively better result in all but one, which is not a better result. It
can also be argued that the TPMFP may provide an outstanding IFS by requiring a minimum number of iterations.
Table 10 also compares the bar graphs in Figure 5 and the line graphs in Figure 6 required to achieve the IFS for the
proposed TPMFP algorithm. The comparative results shown in Table 10 are also represented using bar graphs and
line graphs, as shown in Figures 5 and 6:
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., 50000
2 45000
© 40000
S 35000
® 30000
5 25000
2 20000
§ 15000
~ 10000
5000 I
o — — e — e — e — e —
NWCM LCM VAM IAM TPMFP Optimal
B MTP-1. 137 232 232 232 232 232
B MTP-2. 468 654 662 662 662 662
mMTP-3. 5,570 8.02 8,000 8.02 8,020 8,020
EMTP-4. 36,795 46,760 46,760 46,700 46.7 46,760
EMTP-5. 28,150 33,800 34,050 34,050 34,050 34,050

Figure 5. Comparative study of the result obtained by NWCM, CM, VAM, 1AM, and TPMFP

Line graphs to indicate PD of the NWCM, LCM, VAM, and IAM with TPMFP from the minimal total cost
solution obtained in Table 10 are presented in Figure 6:

Deviation Chart

0 o . ®
-5
-10
-15
a 20
& 25
-30
-35
-40
-45
NWCM LCM VAM IAM TPMFP
—@—MTP-1. -40.9 0 0 0 0
=@ MTP-2. -29.3 -1.2 0 0 0
=@ MTP-3. -30.5 0 -0.24 0 0
MTP-4.  -21.31 0 0 -0.12 -0.12
——MTP-5.  -17.32 -0.73 0 0 0

Figure 6. PD of the results obtained by NWCM, LCM, VAM, 1AM, and TPMFP

Table 10 and Figures 5 and 6 demonstrate that the TPMFP method is more efficient than formalized inspection
methods in determining IFS for the TP (NWCM, LCM, VAM, and IAM).

Comparative results acquired by NWCM, LCM, VAM, EDM and Ah. et al. and the proposed method for the ten
benchmark instances are shown in the following Table 11. Detailed data information portrayal of these ten
problems is provided in Appendix D:
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Table 11. Comparative results of NWCM, LCM, VAM, EDM, Ah.et.al, and TPMFP for 10 benchmark instances

TCIFS(Igs) Percentage of Deviation from optimal solution
NWCM LCM VAM EDM Ahetal. TPMFP Optimal NWCM LCM VAM EDM Ah.etal. TPMFP
Prl 5925 4559 5125 4550 4550 4525 4525 30.93 0.75 1325 0.55 055 0.00
Pr2 545 433 425 439 425 425 425 28.23 1.88 0.00 329 0.00 0.00
Pr3 273 231 204 218 200 200 200 36,5 155 2,00 9.00 0.00 0.00
Pr4 980 960 960 960 930 920 920 8.69 6.52 652 652 1.08 0.00
Pr5 234 191 187 218 183 183 183 27.86 437 218 19.12 0.00 0.00
Pr.6 363 305 290 290 290 290 290 0.25 0.00 0.00 0.00 0.00 0.00
Pr.7 540 435 470 415 410 405 405 33.33 740 16.0 246 123 0.00
Pr8 4782 3572 3663 3572 3572 3458 3458 38.28 329 592 329 0.04 0.00
Pr9 95 70 68 70 68 68 68 3.97 029 0.00 029 0.00 0.00
Pr.10 1994 1123 1104 1102 1102 1102 1102 8.09 0.19 0.18 0.00 0.00 0.00

To compare the effectiveness of the TPMFP to existing methods, 10 different TPs were benchmarked and solved
using NWCM, LCM, and VAM, EDM, Ah.et.al, and TPMFP with the results shown in Table 11. TPMFP clearly
achieved the best OS in the fewest number of iterations for all problems. The comparative data from Table 11 is

also depicted using bar graphs and line graphs, as shown in Figures 7 and 8.
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Figure 7. Comparative Stud of the Result obtained by NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP
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Deviation Chart

45
40
35
30
25
20
15
10

Prl1 | Pr.2  Pr3 Pr4 Pr.5 Pr6 Pr7 Pr8 Pr9 Prl0

e NWCM 30.93 2823 O 8.69 | 27.86 0.25 33.33/38.28 3.97 8.09
| CM 0.75 1.88 155 6.52 4.37 0 7.4 | 329 0.29 0.19
VAM 1325 0 2 6.52 | 2.18 0 16 | 5.92 0 0.18
EDM 0.55 3.29 9 6.52 119.12 0 246 3.29  0.29 0
0 0

0 0

PD

e Ah.et.al. 0.55 0 1.08 1.23 | 0.04 0 0
e TPMFP 0 0 0 0 0 0 0 0

Figure 8. PD of the results obtained by NWCM, LCM, VAM, EDM, Ah. et al, and TPMFP

As evidenced by the above results in Table 11, Figure 7, and Figure 8, the proposed method outperformed
NWCM, LCM, VAM EDM, Ah. et al. for all seven TPs listed in Table 11.

This section also compares the performance of various well-known methods (NWC, LCM, VAM, EDM, Ah. et al.,
and PROPOSED METHOD) as well as the solutions obtained from disparate problems. In the sections that follow,
comparative assessments are performed and illustrated. Appendix E contains a detailed representation of the
numerical data.

Table 12. Comparative results of NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP for 10 benchmark instances

Problem TCIFS(Igs) Percentage of Deviation from optimal solution
chosen
NWCM LCM VAM EDM  Ahetal. TPMFP Optimal NWCM LCM VAM EDM Ahetal. TPMFP

Pr.1 2968 2968 2424 2424 2424 2424 2424 22.44 2244 0.00 0.00 0.00 0.00
Pr.2 18800 8800 8350 8350 7750 7750 7750 142,58 13.54 7.74 774  0.00 0.00
Pr.3 14725 14620 13220 13070 12475 12475 12475 18.03 17.19 597 476  0.00 0.00
Pr4 13100 9800 9200 9200 9200 9200 9200 42.39 6.52 0.00 0.00 0.00 0.00
Pr.5 1010 1210 880 950 930 780 780 29.48 55.12 12.80 21.79 19.23 0.00
Pr.6 90 57 57 57 57 57 57 0.57 0.00 0.00 0.00 0.00 0.00
Pr.7 20400 16400 16400 16400 15800 15500 15500 31.61 580  5.80 1.93  0.00 0.00
Pr.8 8150 6450 6000 6000 6000 5600 5600 45.53 15.17 7.14 7.14 7.14 0.00
Pr.9 19700 13750 12250 12250 11500 11500 11500 71.39 19.56 6.52 6.52  0.00 0.00
Pr.10 20530 18780 17060 20530 17050 17050 17050 20.41 10.14 0.05  20.41 0.00 0.00

To compare the TPMFP's effectiveness to existing methods, 10 different TPs were benchmarked and solved using
NWCM, LCM, and VAM, EDM, Ah. et. al., and TPMFP, with the results shown in Table 12.TPMFP clearly
achieved the best IFS with the fewest iterations for all problems. Figures 9 and 10 use bar graphs and line graphs to
illustrate the results graphically.
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Figure 9. A comparison of the results obtained by the NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP

Deviation Chart

PD
o
o

0 —

Pr1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7 Pr8 Pr9 Pr.l0
e NWCM | 22.44 142.58 18.03 42.39 29.48 0.57 31.61/45.53 71.39 20.41
e | CM 22.44 13,54 17.19 6.52 55.12 0 5.8 15.17 19.56 10.14

s \| AM 0 7.74  5.97 0 12.8 0 58 714 652 0.05
EDM 0 7.74 | 4.76 0 2179 O 193 | 7.14 6.52 2041

e Ah.et.al 0 0 0 0 /1923 O 0 7.14 0 0

s TPVIFP 0 0 0 0 0 0 0 0 0 0

Figure 10. PD of the NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP results

Tables 12, Figures 9, and 10 show that the TPMFP method is more efficient than formalized inspection methods
in determining OS for the TP (NWCM, LCM, VAM, EDM, and Ah. et al.). Let us consider the following TP to
find out the minimum transportation cost.

5.3 Numerical lllustration (TP)

A numerical example has been developed for resolving the transportation problem using the proposed algorithm,
which is provided below.

Table 13. Let us consider the following TP to find out the minimum transportation cost
S S, S5
D, 6 8 10 150
D, 7 11 11 175
D; 4 5 12 275
100 300 200
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Table 14. Construct a Predecessor Transportation Cost Table (PTCT) from the given transportation problem

S1 S, S3 Dy D, Ds
D, 6 8 10 0 © o 150
D, 7 11 11 o 0 o 175
D; 4 5 12 00 o 0 275
S 0 © 6 8 10 200
S, 0 o 7 11 11 100
S§3 o© o 0 4 5 12 300
200 100 300 150 175 275
n
Calculate ZE1% = 7L = 890 — 1200 ana @ = 100
Table 15. Distinguish the source or Demand cell close @
S1 S, Ss Dy D, Ds
D, 6 8 10 0 o 150
D, 7 H 11 © 0 o 175
D; 4 5*100 12 o oo 0 175
S1 0 =3 © 6 7 4 200
S, ) o 8 11 5 100
S; =3 0 10 11 12 300
200 0 300 150 175 275
Table 16. Next utilizing the above Algorithm and goes to head
St S, S Dy D, D,
D, 6 g 10 0 =3 150
D, 7 H 11 o) 0 % 175
D; 4 0o 12 © o @ 175
S O © o 6 7 4*175 25
S, © B8 e 8 H  5%100 O
S3 ®© e 0 0 11 R 300
200 0 300 150 175 0
Table 17. Next utilizing the above Algorithm and goes to head
S S, S3 Dy D, D,
D, 6*25 & 10 O I o 125
D, 7 H 11 00 0 o0 175
D; 0 0o © o 0 0
S O e o 6 7 4*175 25
S, e 8 o 8 H  5*%100 0
S; e e 0 10 11 12 300
0 0 300 150 175 O
Table 18. Next utilizing the above Algorithm and goes to head
S1 S 83 D, D, D,
D, 0 8 10 O o) o) 125
D, 7 H 11 =3 0 o0 175
D; 0 0 =) «© 0 0
S1 0 e e 6%*25 7 4*175 0
S, == 06 = § H 5*100 0
S; o o 0 10¥125 11 £ 175
0 0 300 O 175 0
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Table 19. Next utilizing the above Algorithm and goes to head

S, S, S;3 D, D, D3
D; 0 8 0 0 o o 0
D, 7 H 11*175 = 0 o 0
D; 0 0 % © 0 0
S 0 e = 6*25 7 4*175 0
S, = 0 = 8 H  5%100 O
§S3 © o 0 10*¥125 11 2 175
0 0 0 0 175 0
Table 20. Next utilizing the above Algorithm and goes to head
S1 S2 S3 Dy D, D3
D, 0 8 0 O = =] 0
D, 2 H 0 = 0 = 0
D; 0 0 12 oo oo 9 0
S 0 o e 6%25 7 4*175 0
S, © 0 = 8 H 5*100 0
§3 e e 0 10*125 11*175 12 0
0 0 0 O ) 0

Transportation cost= 6x25+4x175+5x100+10x125+11x175=4,525
6. Conclusion

Any mathematical algorithm's modification is a never-ending process to achieve the best possible result. This
paper presents some new strategies for taking care of the maximal network flow problem with applications to
solving the transportation problem. By means of this, we expect to propose an algorithm that will realize maximum
flow in a network flow problem, including a lower number of augmentations. For this, we considered different
kinds of algorithms, for example, Ford-Fulkerson, Edmonds-Karp, Md. Al-Amin Khan, Faruque Ahmed, Chintan,
and Deepak Garg, modified Edmonds-Karp algorithms. This proposed algorithm requires fewer iterations and
augmentations to obtain maximum flow in a network flow problem more precisely in comparison with the other
prominent algorithms. In addition, Transportation of product dissemination from several original points to several
destinations minimizes the cost of transportation. Numerous researchers have focused on solving this problem by
utilizing various approaches. The Northwest, Least Cost, and Vogel's Approximation methods are the most
noticeable and renowned for finding an initial feasible solution for a TP out of all the existing methods and
techniques in the writing. The Modified Distribution (MODI) Method and the Stepping Stone Method are the most
acceptable methods for finding the minimal total cost solution to the transportation problem. These well-known
techniques for minimizing total cost begin with an Initial Feasible Solution (IFS). In this way, an IFS acts as the
foundation of an optimal cost solution technique for any TP. The better the IFS, the fewer iterations it takes to
reach the optimal solution. However, in this research paper, we discuss a new alternative method, a modified max
flow algorithm, which often gives an optimal solution to the transportation problem.

In this research paper, we first examine different initial solutions, giving methods to achieve initial, feasible
solutions to balanced and unbalanced transportation problems. The TPMFP is extremely straightforward,
straightforward, and simple to actualize. This strategy requires a minimum number of steps to achieve optimality
as compared to the existing methods. The comparative assessment shows that both the new method and existing
methods are proficient when compared with the considered approaches of this paper in terms of the quality of the
solution. However, in practice, when researchers and practitioners deal with large-sized transportation problems,
since the existing well-known exact optimal cost solution method (SSM) deals fully with the path tracing
technique, it becomes very difficult to solve large-scale transportation problems. Subsequently, we intend to
devote ourselves in the near future to proposing an alternate optimal approach that gets rid of this difficulty.
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Appen

dix A

Unbalanced Transportation Problems

Problems Data of the problems

UTP-1 =[61014; 1219 21; 1514 17], s;; = [50,50,50], d;; = [30, 40, 55]

UTP-2 =[10843; 1214202; 69 23 25], s;; = [500,400,300], d;; = [250, 350, 600, 150]

UTP-3 =[12106 13; 198 16 25; 17 15 15 20; 23 22 26 12],s;; = [150, 200, 600, 225],
ij = [300,500,75,100]

UTP-4 =[58663;47765; 84664],s;; =[800,500,900], d;; = [400, 400,500, 400,800]

UTP-5 c;j=1[54865;45432; 36584],s;; =[600,400,1000], d;; = [450,400, 200, 250, 300]

Appendix B

Balanced Transportation Problems

Problems Data of the problems

BTP-1 c;j=1[435;654; 8107],s;; =[90,80,100], d;; = [70, 120, 80]
BTP-2 =[4695;,2641;5729],s;; =[16,12,15],d;; = [12,14,9, 8]
BTP-3 ¢j=1[571053; 86912 14; 109810 15], s;; = [5,10,10],d;; = [3,3,10,5,4]
Cij =
BTP-4 [124131892;9161071511; 4910897; 9312645; 71151827; 168451 10],
= [120, 80, 50,90, 100, 60], d;; = [75, 85, 140, 40, 95, 65]
BTP.S =[127381066; 697128124; 101284993;85116793; 76811956], 5;; =
i [60 80,70,100,90], d;; = [20,30,40,70,60,80,100]
Appendix C
Profit maximization Transportation Problems
Problems Data of the problems
MTP-1 =[64158927; 4362],s;; =[14,18,7],d;; = [6,10,15,8]
MTP-2 =[141975;166129; 6165 20],s;; = [10,12,18],d;; = [9,14,7,10]
MTP-3 ¢;j =[16 1411 25; 1829 12 27; 1423 16 12], s;; = [140, 180, 70], d;; = [60, 100, 150, 80]
Cij =
MTP-4 [352233162012; 1421283015 24; 5518172926 19; 2116 1517 31 28; 452316 1122 50], s;; =
[320,180,200,300,300], d;; = [225, 225,200,200, 275, 175]
MTP-5 =[10182; 98 20; 14217; 12 2 25], s;; = [500, 250,350, 600], d;; = [300, 600, 800]
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Appendix D
Problems Data of the problems
BTP-1 (Ekanayake, 2020) ¢;; = [6,8,10;7,11,11;4,5,12], s5;; = [150,175,275], d;; = [200,100,300]

BTP-2 (Ahamad, 2017)  ¢;; = [15,7,25;8,12,14;17,19,21], s;; = [12,17,7], d;; = [12,10,14]
BTP-3 (Khan, 2015) c;j = [3684;6,1,25;7,839],s;; = [13,28,17], di,- = [15,19,13,18]

BTP-4 (Ekanayake, 2020)  ¢;; = [4,6,8,8;6,8,6,7;5,7,6,8], s;; = [40,60,50], d;; = [20,30,50,50]

BTP-5 (Ahamad, 2017) ¢ = [5,7,10,5,3;8,6,9,12,14; 10,9,8,10,15], 5;; = [5,10,10], d;; = [3,3,10,5,4]
BTP-6 (Deshmukh, 2012)  ¢;; = [4,1,2,4,4;2,3,2,2,3;3,5,3,4,4], 5;; = [60,35,40], d;; = [22,45,20,18,30]
BTP-7 (Ekanayake, 2020)  ¢;j = [7,5,9,11;4,3,8,6;3,8,10,5;2,6,7,3], 5;; = [30,20,25,15], d;; = [30,30,20,10]

c;j = [25,14,34,46,45; 10,47,14,20,41; 22,42,38,21,46; 36,20,41,38,44], s;; =
[27,35,37,45], d;; = [22,27,28,33,34]

BTP-9 (Khan, 2015) ¢;j =1[7,10,7,4,78;5,1,5,5,3,3; 4,3,7,9,1,9[4,6,9,0,0,8], 5;; = [5,6,2,9], d;; = [4,4,6,2,4,2]

¢;j = [73,40,9,79,20; 62,93,96,8,13; 96,65,80,50,65,57,58,29,12,87; 56,23,87,18,12], 5;; =
[8,7,9,3,5], d;; = [6,8,10,4,4]

BTP-8 (Ekanayake, 2020)

BTP-10 (Uddin, 2016)

Appendix E

Problems Data of the problems

UTP-1 (Girmay, 2013)  ¢;; = [4,8,8;16,24,16;8,16,24], 5;; = [76,82,77], d;; = [72,102,44]
UTP-2 (Ahamad, 2017) ¢;; = [1084 3; 121420 2; 69 23 25], 5;; = [500,400,300], d;; = [250, 350, 600, 150]

=[1210613; 19816 25; 17 15 15 20; 23 22 26 12], s;; = [150,200, 600, 225],

UTP-3 (Ahamad, 2016) d;; = [300,500,75,100]

UTP-4 (Ahamad, 2016) =[58663;47765; 84664],s;; = [800,500,900], d;; = [400, 400, 500, 400, 800]
UTP-5 (Khan, 2015) =[54865; 45432; 36584],s;; = [600,400,1000], d;; = [450, 400,200, 250, 300]
UTP-6 (Khan, 2015) = [4,5,6,;3,1,5;2,4,4], s;; = [12,11,7], d;; = [6,5,8]

UTP-7 (Khan, 2015) = [25,17,25,14; 15,10,18,24; 16,20,8,13], s5;; = [300,500,600], d;; = [300,300,500,500]
UTP-8  (Ekanayake, = [5,4,8,6,5; 4,5,4,3,2;3,6,5,84], s;; = [600,400,1000], d;; = [450,400,200,250,300]
2020)

c;j = [10,2,16,14,10; 6,18,12,13,16; 8,4,14,12,10; 14,22,20,8,18], 5;; =
[300,500,825,375], d;; = [ 350,400,250,150,100]

UTP-10 (Uddin, 2016)  ¢;; = [42,48,38,37;40,49,52,51; 39,38,40,43, ], s;; = [160,159,190], d;; = [80,90,110,160]

UTP-9 (Khan, 2015)
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