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Abstract 
The maximum flow problem is also one of the highly regarded problems in the field of optimization theory in 
which the objective is to find a feasible flow through a flow network that obtains the maximum possible flow 
rate from source to sink. The literature demonstrates that different techniques have been developed in the past to 
handle the maximum amount of flow that the network can handle. The Ford-Fulkerson algorithm and Dinic's 
Algorithm are the two major algorithms for solving these types of problems. Also, the Max-Flow Min-Cut 
Theorem, the Scaling Algorithm, and the Push–relabel maximum flow algorithm are the most acceptable 
methods for finding the maximum flows in a flow network. In this novel approach, the paper develops an 
alternative method of finding the maximum flow between the source and target nodes of a network based on the 
"max-flow." Also, a new algorithmic approach to solving the transportation problem (minimizing the 
transportation cost) is based upon the new maximum flow algorithm. It is also to be noticed that this method 
requires a minimum number of iterations to achieve optimality. This study's algorithmic approach is less 
complicated than the well-known meta-heuristic algorithms in the literature.  
Keywords: maximum flow, network flow models, transportation problem, initial feasible solution, optimal 
solution 
1. Introduction 
The flow network is a directed graph where V is an n-set of nodes that get a flow and E is an m-set of directed 
edges that have a capacity. The proportion of flow on an edge can't surpass the limit of the edge. In these 
situations, it is normally needed to move the maximum amount of flow from a beginning point s (called the 
source) to a terminal point t (called the sink) (Dash, 2019; Dimitri, 1998). We are now interested in related 
problems that are called maximum flow problems. Each has a nonnegative capacity (weight or time), 
determining the maximum number of flow units that can pass along the arc. 
The network flow problem is one of the most fundamental problems in operations research. Many practical 
problems can be expressed as network flow problems. Such as modeling traffic in a road system, fluid in pipes, 
computer networks, current in an electrical circuit, etc. Networks can be broadly classified into two types: 

i. Ordinary network flow models require flow protection on all arcs: the measure of flow entering an 
arc equals the measure of flow leaving the arc. 

ii. Generalized network flow models: Generalized networks allow modeling of conditions including 
inefficient or super-efficient flows as well as flow transformation. For example, transportation 
problems, assignment problems, maximum value flow, minimum cost flow problems, and shortest 
path problems, etc. 

During the Cold War, the US Air Force at that time was very interested in the Soviet train networks. In these 
reports, the Air Force collected enough information about the train network that they were able to determine how 
resources could be transported from the Soviet Union to Europe. And what needed to be done to destroy this 
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movement of resources. This problem leads to the concept of a flow network. Aviation-based armed forces 
scientists T. E. Harris and F. S. Ross (1956) published a classified report considering the rail network that linked 
the Soviet Union's satellites. Harris and Ross, studying the rail network, modeled it as a graph with 44 vertices 
and 105 edges, representing joins between those locales in the rail network. The system unraveling technique is 
based on the Ford-Fulkerson max-stream calculation. The network unraveling method is based on the 
Ford-Fulkerson max-flow algorithm. Ford and Fulkerson (1962) defined flows as an area of operations research. 
This concept was implemented by many scientists, statisticians, mathematicians, and engineers. 
In the previous few years, different types of algorithms for solving this problem have been proposed, for 
example, the network unraveling technique based on the Ford-Fulkerson max-flow algorithm (1956), A Parallel 
Ford-Fulkerson Algorithm For Maximum Flow Problem (Harris and Ross, 1956), Maximum Flow Problem 
(Ahuja, 1989; Karzanova, 1974). The Maximum Flow Network Interdiction Problem (Douglas, 2010), etc. In 
like manner, transportation problems have been generally considered in Operation Research. It is one of the 
fundamental problems of the network flow problem (Dinice, 1970; Elias et al., 1956; Fulkerson & Dantzig, 1955), 
which is normally used to minimize the transportation cost for ventures with a couple of sources to a couple of 
objectives. 
The fundamental TP was first proposed by F. L. Hitchcock in 1941, and then independently by T. C. Koopmans 
in 1947, after which the logical solution procedures from the simplex algorithm were further developed 
(Kulkarni & Datar, 2010; Mallick et al., 2016), primarily by Dantzig and then by Charnes et al. (1953). The 
Simplex Method isn't reasonable for the transportation problem, especially for large scale transportation 
problems, in view of the interesting structure of the model by charges and Cooper (1954) who made the Stepping 
Stone method. The literature witnesses that different techniques (Ahmedat et al., 2016-2017; Babu at el., 2013; 
Deshmukh, 2012; Ekanayake, 2020-2021; Girmay, 2013; Hitchcock, 1941; Khan, 2015; Kulkarni, 2010; 
Pannerselvam, 2010) have been developed in the past to solve the transportation problem. In this study, we 
examine a novel approach for solving the maximum-flow problems and TP problems (TPMFP), which is based 
on the use of the Predecessor cost matrix. The proposed algorithm is basic, straightforward, and simple to 
actualize. This method is also to be noticed that, requires a minimum number of steps to reach optimality as 
compare the obtained results with the regular methods. Finally, this procedure is outlined with some numerical 
examples. We present a few new effective algorithms for the summarized maximum flow problem. 
2. The Key Definitions 
Definition 1 (Edmonds, 1972; Fulkerson, 1955). A flow network is a directed graph G = (V, E), with a source s 
∈ V, a sink t ∈ V, and each edge (i, j) ∈ E has a non-negative capacity c(i, j). 
Definition 2 (Ford, 1962). Given a flow network 𝐺 = (𝑉, 𝐸), a flow in G is described by a function 𝑓: 𝑉 × 𝑉 → ℝ Satisfying  

i. Capacity constraint: 0 ≤ 𝑓(𝑖, 𝑗) ≤ 𝑐(𝑖, 𝑗) for each 𝑖, 𝑗 ∈ 𝑉.  
ii. Skew –symmetry (Anti symmetry): 𝑓(𝑖, 𝑗) = −𝑓(𝑗, 𝑖) for all 𝑖, 𝑗 ∈ 𝑉.  

iii. Flow conservation:  
For each       𝑖, 𝑗 ∈ 𝑉, then ∑ 𝑓(𝑖, 𝑗) = ∑ 𝑓(𝑗, 𝑖)∈∈  

                         Flow into j Flow out of j 
Flow value |𝑓| = ∑ 𝑓(𝑖, 𝑘) − ∑ 𝑓(𝑘, 𝑖)                ∈∈  

Definition 3 (Dimitri, 1998). Predecessor cost matrix 
The algorithm represents an n- node network as a square matrix with   n- rows and n- columns. Entry (i, j) of 
the matrix gives the weight w from node i to node j. 
That is, W = (wij), where, 𝑤 = 0                                                                             if 𝑖 = 𝑗𝑇ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 (𝑖, 𝑗)     if  𝑖 ≠ 𝑗 and (𝑖, 𝑗) ∈ 𝐸∞                                       𝑖𝑓  𝑖 ≠ 𝑗 𝑎𝑛𝑑     (𝑖, 𝑗) ∉ 𝐸  

Definition 4 (Dimitri, 1998). Flow Capacity Update. (Augmenting path) 
We are given a weighted, directed graph 𝐺 = (𝑉, 𝐸) .There is a weight of path (P) from s to t for all 
edges(𝑖, 𝑗) ∈ 𝑃, sub graph of  𝐺 = (𝑉 , 𝐸 ); 𝑉 ⊆ 𝑉 and 𝐸 ⊆ 𝐸 s.t. 
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i. 𝐸  s the rechargeable edges. 
ii. 𝐺  is the path from s to t. 

iii. For all 𝑣 ∈ 𝑉 ; the unique direct path from s to t. 
iv. Max flow-carrying path P has been found from s to t (𝑤∗ 0 for every arc (𝑖, 𝑗) on the path), and 𝑤 ( ) = 𝑀𝑖𝑛 𝑤∗  |: ( 𝑖, 𝑗) 𝑜𝑛 𝑷}, where m is number of iteration. 

v. The capacity constraints are satisfied  
a. If(𝑖, 𝑗) ∈ 𝑷, then 𝑤(𝑖, 𝑗) − 𝑤 ( ) 
b. Otherwise, (𝑖, 𝑗) ∉ 𝑷 is from the original flow. 

Definition 5.  
Network flow algorithms depend on the idea of augmenting paths (predecessor cost matrix) and more than once 
find a path of positive capacity from s to t and add it to the flow. It tends to be demonstrated that the flow 
through a network is optimal if and only if it contains no augmenting paths. 
Definition 6 (Dimitri, 1998).  
The value of a Max flow is defined as |𝑤| = ∑ 𝑤 ( )( , )∈ which is the total amount out of the source (also equal 
the total amount into the sink). 
3. Mathematical Model 
3.1 Max Flow  
The problem can be formulated as follows; 

Maximize         𝑉 
Subject to; 𝑥 − 𝑥 =     𝑉  𝑖𝑓   𝑖 = 𝑠−𝑉  𝑖𝑓   𝑖 = 𝑡  0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 ≤ 𝑥 ≤ 𝑢 ; 𝑖 = 1,2, … 𝑚 𝑎𝑛𝑑 𝑗 = 1,2,3. . 𝑛 

We assume that there is no arc from 𝑡 𝑡𝑜 𝑠 and 𝑢 = ∞ if arc 𝑖 𝑡𝑜 𝑗 has unlimited capacity.  
3.1.1 Predecessor Cost Matrix for Max Flow 
Table 1. Predecessor cost matrix for Max Flow 

 A B C ….. L M N
A 0 𝛼 𝛼 ….. 𝛼 𝛼 𝛼
B 𝛼 0 𝛼 ….. 𝛼 𝛼 𝛼
C 𝛼 𝛼 0 ….. 𝛼 𝛼 𝛼
⁞ ⁞ ⁞ ⁞ ….. ⁞ ⁞ ⁞
L 𝛼 𝛼 𝛼 ….. 0 𝛼 𝛼
M 𝛼 𝛼 𝛼 ….. 𝛼 0 𝛼
N 𝛼 𝛼 𝛼 ….. 𝛼 𝛼 0

Where 𝛼 = 𝛿 ; 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟∞ ; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

For 𝑖, 𝑗 = A, B, C…... L, M, N. 
3.2 Transportation Problem (Rayand & Hosain, 2007) 
The total transportation cost is 

Minimize∑ ∑ 𝑋 𝐶   

Subject to the constraints  
i. ∑ 𝑋 = 𝑎 , 𝑖 = 1,2, … , 𝑚  

ii. ∑ 𝑋 = 𝑏 , 𝑗 = 1,2, … , 𝑛 and 



mas.ccsenet.org Modern Applied Science Vol. 16, No. 1; 2022 

33 
 

iii. 𝑋 0 for all 𝑖 = 1,2, … , 𝑚 and 𝑗 = 1,2, … , 𝑛  

Note that here the sum of the supplies equals the sum of the demands. i.e. ∑ 𝑎 = ∑ 𝑏 . Such problems are 
called balanced transportation problems and otherwise, i.e. ∑ 𝑎 ≠ ∑ 𝑏 , known as unbalanced 
transportation problems. 

i. ∑ 𝑎 ∑ 𝑏  

ii. ∑ 𝑎 ∑ 𝑏  
Introduce a dummy origin in the transportation table; the cost associated with this origin is set equal to zero. The 
availability at this origin is: ∑ 𝑎 − ∑ 𝑏 = 0. 
3.2.1 Predecessor Cost Matrix for TP 
Table 2. Predecessor cost matrix for TP 

 𝑺𝟏 𝑺𝟐 ….. 𝑺𝒎 𝟏 𝑺𝒎 𝑫𝟏 𝑫𝟐 …. 𝑫𝒏 𝟏 𝑫𝒏𝑺𝟏 0 ∞  ∞ ∞ 𝐶 𝐶 …. 𝐶 ( ) 𝐶 𝒂𝟏𝑺𝟐  0 …. ∞ ∞ 𝐶 𝐶 …. 𝐶 ( ) 𝐶 𝒂𝟐
⁞ ⁞ ⁞  ⁞ ⁞ ⁞ ⁞ …. ⁞ ⁞ ⁞𝑺𝒎 𝟏 ∞ ∞ …. 0 ∞ 𝐶( ) 𝐶( ) …. 𝐶( )( ) 𝐶( ) 𝒂𝒎 𝟏𝑺𝒎 ∞ ∞ …. ∞ 0 𝐶 𝐶 …. 𝐶 ( ) 𝐶 𝒂𝒎𝑫𝟏 𝐶  𝐶   𝐶( )  𝐶 0 ∞ …. ∞ ∞ 𝒃𝟏𝑫𝟐 𝐶  𝐶   𝐶( )  𝐶 ∞ 0 …. ∞ ∞ 𝒃𝟐
⁞     ⁞ ⁞ …. ⁞ ⁞ 𝑫𝒏 𝟏 𝐶 ( ) 𝐶 ( )  𝐶( )( ) 𝐶( )( ) ∞ ∞ …. 0 ∞ 𝒃𝒏 𝟏𝑫𝒏 𝐶  𝐶   𝐶( )  𝐶( ) ∞ ∞ …. ∞ 0 𝒃𝒏
 𝒃𝟏 𝒃𝟐  𝒃𝒏 𝟏 𝒃𝒏 𝒂𝟏 𝒂𝟐 𝒂𝒎 𝟏 𝒂𝒎

4. Illustration of the Proposed Algorithm 
A wide range of decision problems that can be modeled as network optimization problems and solved efficiently 
and effectively can be solved using network models. Some of these decision problems, such as transportation or 
commodity flow, are physical in nature. On the other hand, many network problems, such as the critical path 
activity network in project management, are abstract representations of processes or activities. Researchers have 
improved a number of algorithms for solving maximal-flow problems over the last fifty years. In this algorithm, 
we presented a new algorithm for calculating the maximum flow in a network. The new maximum flow algorithm 
also serves as the foundation for a new algorithmic approach to solving the transportation problem (minimizing 
transportation costs). 
4.1 New Algorithm  
Step 1. Construct the Predecessor cost matrix 
Step 2. Start with 1st row (source node𝒔) and select any weighted node k with 𝑤∗ 0. 
Step 3. Next Select kth row and select any another weighted node i (𝑤∗ ), after that select ith row and select any 
weighted node j (𝑤∗ ), next select jth row and select any weighted node j (𝑤∗ ), and label every node ℎ with 𝑤∗ 0 until either sink t has been labeled (𝑤∗.. ). (There is a path (P) from s to t ) 
Step 4. Find the max flow 𝑤 ( ) = 𝑀𝑖𝑛 𝑤∗  |: (𝑖, 𝑗) 𝑜𝑛 𝑷} 
Step 5. Flow is updated (Definition 4) 
Step 6. If the 𝑤∗ = 0(𝑘 = 2,3,4, , , , 𝑛) or node k with 𝑤∗ .. = 0, yes go to Step 7, no go to Step 3. 
Step 7. Then terminate. 
4.2 Available Algorithm (Dash at el., 2019) 
Proposed Algorithm  
The proposed algorithm is given below:  
Step 1: first initialize the flow f to 0, for each edge (u, v) ∈ E [G],  
Step2: f (u, v) = f (v, u) = 0  
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Step 3: Calculate maximum capacity C in the flow network and then calculate 𝐷 = 11  
Step 4: while D ≥ 1  
Step 5: If there exists an augmenting path p from s to t in the residual network 𝐺  with capacity at least D the select 
it and go to step 6; otherwise go to step 9.  
Step6: set 𝑐 (p) = min {𝑐  (u, v):(u, v)is in p}  
Step 7: For each (u, v) ∈p, if (u, v) ∈ E set f (u, v) = f (u, v) + 𝑐 (𝑝) else f (u, v) = - f (v, u)  
Ste p 8: Calculate the flow value.  

Step 9: D =   

Step10: The flow is maximum 
4.3 New Algorithm for TP 
Step-1. Construct a Predecessor Transportation Cost Table (PTCT) from the given transportation problem. 
Step-2. Ensure whether the PTCT is balanced or not, if not, make it balanced and complete PTCT of order m x n. 

Step 3. Calculate, ∅ = ∑ = ∑   
Step 4. Distinguish the source or Demand cell close ∅. 
Step 5. ∅ cell placed at the starting nodes with the minimum 𝐶  value of the PTCT to make the first allocation  
Step 6. Next utilizing the above Algorithm and goes to head. 
Step 7. Then terminate and calculate the total transportation cost 
5. A Comparison of the Methods  
5.1 Comparative Assessment with Max Flow  
A numerical example has been unraveled for finding the maximum value of a Maximum flow problem by utilizing 
proposed algorithm which is given underneath (Dash et al., 2019). 
Consider a pipeline system in an Azimpur colony to supply gas in different zones of an Azimpur Colony of Dhaka 
in the Bangladesh. The pipeline has a communicated capacity in per unit per hour between any two zones which 
given as a maximum flow at which gas can flow by the pipe between those two zones. Presently, Consider I need to 
supply gas from the source zone to the sink zone, assume the source zone is say A and the sink zone is F and gas 
passes into 4 others zones before getting from source to sink. Suppose B, C, D, E, are of these 4 zones and pipeline 
between any two zones has indicated capacity. Demonstrates the input information's which have given to the 
problem talked above in the following Table 1 
Table 3. Indicate capacities of each pipeline between two zones 

Source part A A B B D D E E  
Destination part B C D C E F B F  
Capacity(Gallons/hour) 35 10 14 40 19 20 9 25  

Calculate the maximum amount of gas which can flow from A to F. 
Step 1. 
Table 4. Predecessor cost matrix 

 A B C D E F A B C D E F 
A 0 35 ∞ 10 ∞ ∞ A 0 21 ∞ 10 ∞ ∞ 
B ∞ 0 14 40 ∞ ∞ B 14 0 0 40 ∞ ∞ 
C ∞ ∞ 0 ∞ 19 20 C ∞ 14 0 ∞ 19 6 
D ∞ ∞ ∞ 0 35 ∞ D ∞ ∞ ∞ 0 35 ∞ 
E ∞ 9 ∞ ∞ 0 25 E ∞ 9 ∞ ∞ 0 25 
F ∞ ∞ ∞ ∞ ∞ 0 F ∞ ∞ 14 ∞ ∞ 0 𝑤 ( ) = 𝑀𝑖𝑛 𝑤∗  |: (𝑖, 𝑗) 𝑜𝑛 𝑷 } =Min {35, 14, 20}=14 path A-B-C-F 
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Step 2. 
Table 5. Predecessor cost matrix 

 A B C D E F  A B C D E F 
A 0 21 ∞ 10 ∞ ∞ A 0 0 ∞ 10 ∞ ∞ 
B 14 0 0 40 ∞ ∞ B 14 21 0 0 19 ∞ ∞ 
C ∞ 14 0 ∞ 19 6 C ∞ 14 0 ∞ 19 6 
D ∞ ∞ ∞ 0 35 ∞ D ∞ 21 ∞ 0 16 ∞ 
E ∞ 9 ∞ ∞ 0 25 E ∞ 9 ∞ 21 0 4 
F ∞ ∞ 14 ∞ ∞ 0 F ∞ ∞ 14 ∞ 21 0 𝑤 ( ) = 𝑀𝑖𝑛 𝑤∗  |: (𝑖, 𝑗) 𝑜𝑛 𝑷 } = Min {21, 40, 35, 25}=21 path A-B-D-E-F 

Step 3. 
Table 6. Predecessor cost matrix 

  A B C D E F   A B C D E F 
A s 0 0 ∞ 10 ∞ ∞ A s 0 0 ∞ 6 ∞ ∞
B 1 14 21 0 0 19 ∞ ∞ B 1 14 21 0 0 19 ∞ ∞
C 2 ∞ 14 0 ∞ 19 6 C 2 ∞ 14 0 ∞ 19 6 
D 3 ∞ 21 ∞ 0 16 ∞ D 3 ∞ 21 4 ∞ 0 12 ∞
E 4 ∞ 9 ∞ 21 0 4 E 4 ∞ 9 ∞ 21 4 0 0 
F t ∞ ∞ 14 ∞ 21 0 F t ∞ ∞ 14 ∞ 21 4 0 𝑤 ( ) = 𝑀𝑖𝑛 𝑤∗  |: ( 𝑖, 𝑗) 𝑜𝑛 𝑷 } = Min {10,16,4}=4 path A-D-E-F |𝑤| = 𝑤 ( )( , )∈ = 14 21 4 = 39 

Now we construct the following table to compare different algorithms with our proposed algorithm 
Table 7. Assessment of the residual obtained by different methods 

Name of Algorithm Number of Iterations Number of augmentation 
Ford -Fulkerson 4 4 
Edmonds-Karp 3 3 
Md.Al-Amin Khan 4 3 
Faruque Ahmed 3 3 
Modified Edmonds-Karp 3 3 
Protima Dash et.al.Method 2 3 
New Method 2 3 

By implies new algorithm yields better outcomes that will be resulted in maximum flow in a network flow problem 
involving a fewer number of iterations just as fewer augmentations of this we needed to propose. 
5.2 Comparative Assessment with TP 
This section gives execution relationships over the distinctive eminent methods – NWCR, LCM, VAM, New 
method (TPMFP) and to find the optimal result by the solutions obtained from disparate problems. Comparable 
assessments are performed and illustrated in the immediately following sections. The detailed representation of 
the numerical information of Table is given in Appendix A. 
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Table 8. A comparative results obtained by NWCM, LCM, VAM, IAM and New method for the FIVE 
unbalance transportation problem. 

Problem chosen from 
Ahmed et al. 

  TCIFS(𝑰𝑭𝑺) 
  Optimal 

result (𝑶𝒄) Percentage of Deviation from optimal solution 

 NWCM LCM VAM IAM TPMFP  NWCM LCM VAM IAM TPMFP 

UBTP-1. 1,815 1,185 1,745 1,695 1,655 1,650 9.69 14.24 5.75 2.72 0.30 

UBTP-2. 18,800 8,800 8,350 8,400 7,750 7,750 142.6 13.54 7.74 8.38 0.00 

UBTP-3. 14,725 14,625 13,225 13,075 12,475 2,475 18.03 17.23 6.01 4.80 0.00 

UBTP-4. 13,100 9,800 9,200 9,200 9,200 9,200 42.39 6.52 0.00 0.00 0.00 

UBTP-5. 8,150 6,450 6,000 5,850 5,600 5,600 45.53 15.17 7.14 4.46 0.00 

The TPMFP method's efficiency was also tested by solving five benchmark problems, and performance 
comparisons between the various well-known methods (NWCM, LCM, VAM, and IAM) are provided in Table 8. 
It is clear that the TPMFP method produces a comparatively more appealing result. It can also be demonstrated 
that the TPMFP provides a motivating initial feasible solution (IFS) by requiring a minimum number of 
iterations. Table 8 is depicted as a bar graph in Figure 1 and as a line graph in Figure 2 to demonstrate the 
significance of the proposed method, TPMFP, over other considered existing methods in terms of transportation 
cost, IFS, and percentage deviation (PD), respectively: 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Comparative study of the result obtained by NWCM, LCM, VAM, IAM, and TPMFP 
Line graph presented in Figure 2 indicates PD of the NWCM, LCM, VAM, IAM and TPMFP from the minimal 
total cost solution obtained in Table 8: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. PD of the results obtained by NWCM, LCM, VAM, IAM, and TPMFP 
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NWCM LCM VAM IAM TPMFP Optimal
BTP.1 1,500 1,450 1,500 1,390 1,390 1,390
BTP..2 226 156 156 156 156 156
BTP.3 234 191 187 186 183 183
BTP.4 4,285 2,455 2,310 2,365 2,330 2,170
BTP.5 3,180 2,080 1,930 1,900 1,900 1,900
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According to Table 8 and Figures 1 and 2, TPMFP is the best IFS, almost identical to the optimal solution (OS) in 
every case, obtained by the MODI method for TPs, and better than the solution obtained by the other existing 
methods such as NWCM, LCM, VAM, and IAM. The proposed TPMFP achieves more efficient IFS for a diverse 
set of TPs in fewer iterations. 
The next section gives execution relationships for the distinctive eminent methods—NWCR, LCM, VAM, and 
the new method—and how to find the best result from the solutions obtained from disparate problems. 
Comparable assessments are performed and illustrated in the immediately following sections. The detailed 
representation of the numerical information in the table is given in Appendix B. 
Table 9. A comparative results obtained by NWCM, LCM, VAM, IAM and New method for the FIVE balance 
transportation problem 

Problem 
chosen [2]  

 TCIFS(𝑰𝑭𝑺)     Percentage of Deviation from optimal 
solution 

 NWCM LCM VAM IAM TPMFP Optimal NWCM LCM VAM IAM TPMFP
BTP.1 1,500 1,450 1,500 1,390 1,390 1,390 0.08 0.04 0.08 0.00 0.00 
BTP.2 226 156 156 156 156 156 44.9 0.00 0.00 0.00 0.00 
BTP.3 234 191 187 186 183 183 27.9 4.37 2.18 1.64 0.00 
BTP.4  4,285 2,455 2,310 2,365 2,330 2,170 97.5 13.13 6.45 8.98 7.37 
BTP.5 3,180 2,080 1,930 1,900 1,900 1,900 67.36 9.47 1.57 0.00 0.00 

As shown in Table 9, the proposed TPMFP method achieves a more promising IFS than the traditional algorithms 
considered in this study, as shown in Figure 3 and 4. Table 6 is depicted in Figure 3 as a bar graph and in Figure 4 
as a line graph to demonstrate the significance of the proposed method, NEWA, in terms of transportation cost and 
IFS and PD, respectively:  

 
 

 

 

 

 

 

 

Figure 3. Comparative study of the result obtained by NWCM, LCM, VAM, IAM, and TPMFP 
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Figure 4. PD of the results obtained by NWCM, LCM, VAM, IAM, and TPMFP 
According to Table 9, Figures 3 and 4, TPMFP is the best IFS, almost identical to the OS in all but one case in 
reaching the IFS, obtained by the MODI method for TPs, and better than the solution obtained by the other 
existing methods such as NWCM, LCM, VAM, and IAM. The proposed TPMFP achieves more efficient IFS for 
a diverse set of TPs in fewer iterations. 
This section also compares the performance of various well-known methods (NWC, LCM, VAM, IAM, and 
TPMFP) developed using maximization TPs. The sections that follow perform and illustrate comparative 
assessments. Table 10 contains a detailed representation of the numerical data. Appendix C includes detailed data 
representations of the following five problems: 
Table 10. Performance measure NEWA over NWCM, LCM, VAM, and IAM 

Problem 
chosen from  

  TCIFS(𝑰𝑭𝑺)   Optimal 
Result(𝑶𝒄) Percentage of Deviation from optimal 

solution 

Ahmed et al NWCM LCM VAM IAM TPMFP  NWCM LCM VAM IAM TPMFP
MTP-1. 137 232 232 232 232 232 -40.9 0.00 0.00 0.00 0.00 
MTP-2. 468 654 662 662 662 662 -29.30 -1.20 0.00 0.00 0.00 
MTP-3. 5,570 8.020 8,000 8.020 8,020 8,020 -30.5 0.00 -0.24 0.00 0.00 
MTP-4. 36,795 46,760 46,760 46,700 46.700 46,760 -21.31 0.00 0.00 -0.12 -0.12 
MTP-5. 28,150 33,800 34,050 34,050 34,050 34,050 -17.32 -0.73 0.00 0.00 0.00 

The TPMFP method's efficiency has also been tested by solving five benchmark problems and comparing 
performance across various well-known methods (NWCM, LCM, VAM, and IAM) in Table 10, where it is 
discovered that the TPMFP method yields a comparatively better result in all but one, which is not a better result. It 
can also be argued that the TPMFP may provide an outstanding IFS by requiring a minimum number of iterations. 
Table 10 also compares the bar graphs in Figure 5 and the line graphs in Figure 6 required to achieve the IFS for the 
proposed TPMFP algorithm. The comparative results shown in Table 10 are also represented using bar graphs and 
line graphs, as shown in Figures 5 and 6: 
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Figure 5. Comparative study of the result obtained by NWCM, CM, VAM, IAM, and TPMFP 
Line graphs to indicate PD of the NWCM, LCM, VAM, and IAM with TPMFP from the minimal total cost 
solution obtained in Table 10 are presented in Figure 6: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. PD of the results obtained by NWCM, LCM, VAM, IAM, and TPMFP 
Table 10 and Figures 5 and 6 demonstrate that the TPMFP method is more efficient than formalized inspection 
methods in determining IFS for the TP (NWCM, LCM, VAM, and IAM). 
Comparative results acquired by NWCM, LCM, VAM, EDM and Ah. et al. and the proposed method for the ten 
benchmark instances are shown in the following Table 11. Detailed data information portrayal of these ten 
problems is provided in Appendix D: 
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Pr.1 Pr.2 Pr.3 Pr.4 Pr.5 Pr.6 Pr.7 Pr.8 Pr.9 Pr.10
NWCM 5925 545 273 980 234 363 540 4782 95 1994
LCM 4559 433 231 960 191 305 435 3572 70 1123
VAM 5125 425 204 960 187 290 470 3663 68 1104
EDM 4550 439 218 960 218 290 415 3572 70 1102
Ah.et.al. 4550 425 200 930 183 290 410 3572 68 1102
TPMFP 4525 425 200 920 183 290 405 3458 68 1102
Optimal 4525 425 200 920 183 290 405 3458 68 1102
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Table 11. Comparative results of NWCM, LCM, VAM, EDM, Ah.et.al, and TPMFP for 10 benchmark instances 
  TCIFS(𝑰𝑭𝑺)      Percentage of Deviation from optimal solution 

 NWCM LCM VAM EDM Ah.et.al. TPMFP Optimal NWCM LCM VAM EDM Ah. et al. TPMFP

Pr.1 5925 4559 5125 4550 4550 4525 4525 30.93 0.75 13.25 0.55 0.55 0.00 

Pr.2 545 433 425 439 425 425 425 28.23 1.88 0.00 3.29 0.00 0.00 

Pr.3 273 231 204 218 200 200 200 36,5 15.5 2.00 9.00 0.00 0.00 

Pr.4  980 960 960 960 930 920 920 8.69 6.52 6.52 6.52 1.08 0.00 

Pr.5 234 191 187 218 183 183 183 27.86 4.37 2.18 19.12 0.00 0.00 

Pr.6 363 305 290 290 290 290 290 0.25 0.00 0.00 0.00 0.00 0.00 

Pr.7 540 435 470 415 410 405 405 33.33 7.40 16.0 2.46 1.23 0.00 

Pr.8 4782 3572 3663 3572 3572 3458 3458 38.28 3.29 5.92 3.29 0.04 0.00 

Pr.9 95 70 68 70 68 68 68 3.97 0.29 0.00 0.29 0.00 0.00 

Pr.10 1994 1123 1104 1102 1102 1102 1102 8.09 0.19 0.18 0.00 0.00 0.00 

To compare the effectiveness of the TPMFP to existing methods, 10 different TPs were benchmarked and solved 
using NWCM, LCM, and VAM, EDM, Ah.et.al, and TPMFP with the results shown in Table 11. TPMFP clearly 
achieved the best OS in the fewest number of iterations for all problems. The comparative data from Table 11 is 
also depicted using bar graphs and line graphs, as shown in Figures 7 and 8. 

Figure 7. Comparative Stud of the Result obtained by NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP 
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Figure 8. PD of the results obtained by NWCM, LCM, VAM, EDM, Ah. et al, and TPMFP 
As evidenced by the above results in Table 11, Figure 7, and Figure 8, the proposed method outperformed 
NWCM, LCM, VAM EDM, Ah. et al. for all seven TPs listed in Table 11. 
This section also compares the performance of various well-known methods (NWC, LCM, VAM, EDM, Ah. et al., 
and PROPOSED METHOD) as well as the solutions obtained from disparate problems. In the sections that follow, 
comparative assessments are performed and illustrated. Appendix E contains a detailed representation of the 
numerical data. 
Table 12. Comparative results of NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP for 10 benchmark instances 

Problem 
chosen  

 TCIFS(𝑰𝑭𝑺)      Percentage of Deviation from optimal solution 

 NWCM LCM VAM EDM Ah.et.al. TPMFP Optimal NWCM LCM VAM EDM Ah.et.al. TPMFP

Pr.1 2968 2968 2424 2424 2424 2424 2424 22.44 22.44 0.00 0.00 0.00 0.00 

Pr.2 18800 8800 8350 8350 7750 7750 7750 142.58 13.54 7.74 7.74 0.00 0.00 

Pr.3 14725 14620 13220 13070 12475 12475 12475 18.03 17.19 5.97 4.76 0.00 0.00 

Pr.4  13100 9800 9200 9200 9200 9200 9200 42.39 6.52 0.00 0.00 0.00 0.00 

Pr.5 1010 1210 880 950 930 780 780 29.48 55.12 12.80 21.79 19.23 0.00 

Pr.6 90 57 57 57 57 57 57 0.57 0.00 0.00 0.00 0.00 0.00 

Pr.7 20400 16400 16400 16400 15800 15500 15500 31.61 5.80 5.80 1.93 0.00 0.00 

Pr.8 8150 6450 6000 6000 6000 5600 5600 45.53 15.17 7.14 7.14 7.14 0.00 

Pr.9 19700 13750 12250 12250 11500 11500 11500 71.39 19.56 6.52 6.52 0.00 0.00 

Pr.10 20530 18780 17060 20530 17050 17050 17050 20.41 10.14 0.05 20.41 0.00 0.00 

To compare the TPMFP's effectiveness to existing methods, 10 different TPs were benchmarked and solved using 
NWCM, LCM, and VAM, EDM, Ah. et. al., and TPMFP, with the results shown in Table 12.TPMFP clearly 
achieved the best IFS with the fewest iterations for all problems. Figures 9 and 10 use bar graphs and line graphs to 
illustrate the results graphically.  

 
 
 
 
 

Pr.1 Pr.2 Pr.3 Pr.4 Pr.5 Pr.6 Pr.7 Pr.8 Pr.9 Pr.10
NWCM 30.93 28.23 0 8.69 27.86 0.25 33.33 38.28 3.97 8.09
LCM 0.75 1.88 15.5 6.52 4.37 0 7.4 3.29 0.29 0.19
VAM 13.25 0 2 6.52 2.18 0 16 5.92 0 0.18
EDM 0.55 3.29 9 6.52 19.12 0 2.46 3.29 0.29 0
Ah.et.al. 0.55 0 0 1.08 0 0 1.23 0.04 0 0
TPMFP 0 0 0 0 0 0 0 0 0 0
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Figure 9. A comparison of the results obtained by the NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. PD of the NWCM, LCM, VAM, EDM, Ah. et al., and TPMFP results 
Tables 12, Figures 9, and 10 show that the TPMFP method is more efficient than formalized inspection methods 
in determining OS for the TP (NWCM, LCM, VAM, EDM, and Ah. et al.). Let us consider the following TP to 
find out the minimum transportation cost.  
5.3 Numerical Illustration (TP) 
A numerical example has been developed for resolving the transportation problem using the proposed algorithm, 
which is provided below. 
Table 13. Let us consider the following TP to find out the minimum transportation cost  

 𝑺𝟏 𝑺𝟐 𝑺𝟑𝑫𝟏 6 8 10 150𝑫𝟐 7 11 11 175𝑫𝟑 4 5 12 275
 100 300 200

 
 
 
 

Pr.1 Pr.2 Pr.3 Pr.4 Pr.5 Pr.6 Pr.7 Pr.8 Pr.9 Pr.10
NWCM 22.44 142.58 18.03 42.39 29.48 0.57 31.61 45.53 71.39 20.41
LCM 22.44 13.54 17.19 6.52 55.12 0 5.8 15.17 19.56 10.14
VAM 0 7.74 5.97 0 12.8 0 5.8 7.14 6.52 0.05
EDM 0 7.74 4.76 0 21.79 0 1.93 7.14 6.52 20.41
Ah.et.al. 0 0 0 0 19.23 0 0 7.14 0 0
TPMFP 0 0 0 0 0 0 0 0 0 0
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Pr.1 Pr.2 Pr.3 Pr.4 Pr.5 Pr.6 Pr.7 Pr.8 Pr.9 Pr.10
NWCM 2968 18800 14725 13100 1010 90 20400 8150 19700 20530
LCM 2968 8800 14620 9800 1210 57 16400 6450 13750 18780
VAM 2424 8350 13220 9200 880 57 16400 6000 12250 17060
EDM 2424 8350 13070 9200 950 57 16400 6000 12250 20530
Ah.et.al. 2424 7750 12475 9200 930 57 15800 6000 11500 17050
TPMFP 2424 7750 12475 9200 780 57 15500 5600 11500 17050
Optimal 2424 7750 12475 9200 780 57 15500 5600 11500 17050
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Table 14. Construct a Predecessor Transportation Cost Table (PTCT) from the given transportation problem 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 6 8 10 0 ∞ ∞ 150𝑫𝟐 7 11 11 ∞ 0 ∞ 175𝑫𝟑 4 5 12 ∞ ∞ 0 275𝑺𝟏 0 ∞ ∞ 6 8 10 200𝑺𝟐 ∞ 0 ∞ 7 11 11 100𝑺𝟑 ∞ ∞ 0 4 5 12 300
 200 100 300 150 175 275

Calculate 
∑ 𝒂𝒊𝒎𝒊 𝟏𝒎 = ∑ 𝒃𝒋𝒏𝒋 𝟏𝒎 = 𝟔𝟎𝟎𝟓 = 𝟏𝟐𝟎=∅ and ∅ ≅ 𝟏𝟎𝟎 

Table 15. Distinguish the source or Demand cell close ∅ 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 6 8 10 0 ∞ ∞ 150𝑫𝟐 7 11 11 ∞ 0 ∞ 175𝑫𝟑 4 5*100 12 ∞ ∞ 0 175𝑺𝟏 0 ∞ ∞ 6 7 4 200𝑺𝟐 ∞ 0 ∞ 8 11 5 100𝑺𝟑 ∞ ∞ 0 10 11 12 300
 200 0 300 150 175 275

Table 16. Next utilizing the above Algorithm and goes to head 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 6 8 10 0 ∞ ∞ 150𝑫𝟐 7 11 11 ∞ 0 ∞ 175𝑫𝟑 4 0 12 ∞ ∞ 0 175𝑺𝟏 0 ∞ ∞ 6 7 4*175 25𝑺𝟐 ∞ 0 ∞ 8 11 5*100 0𝑺𝟑 ∞ ∞ 0 10 11 12 300
 200 0 300 150 175 0

Table 17. Next utilizing the above Algorithm and goes to head 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 6*25 8 10 0 ∞ ∞ 125𝑫𝟐 7 11 11 ∞ 0 ∞ 175𝑫𝟑 0 0 12 ∞ ∞ 0 0𝑺𝟏 0 ∞ ∞ 6 7 4*175 25𝑺𝟐 ∞ 0 ∞ 8 11 5*100 0𝑺𝟑 ∞ ∞ 0 10 11 12 300
 0 0 300 150 175 0

Table 18. Next utilizing the above Algorithm and goes to head 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 0 8 10 0 ∞ ∞ 125𝑫𝟐 7 11 11 ∞ 0 ∞ 175𝑫𝟑 0 0 12 ∞ ∞ 0 0𝑺𝟏 0 ∞ ∞ 6*25 7 4*175 0𝑺𝟐 ∞ 0 ∞ 8 11 5*100 0𝑺𝟑 ∞ ∞ 0 10*125 11 12 175
 0 0 300 0 175 0
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Table 19. Next utilizing the above Algorithm and goes to head 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 0 8 0 0 ∞ ∞ 0𝑫𝟐 7 11 11*175 ∞ 0 ∞ 0𝑫𝟑 0 0 12 ∞ ∞ 0 0𝑺𝟏 0 ∞ ∞ 6*25 7 4*175 0𝑺𝟐 ∞ 0 ∞ 8 11 5*100 0𝑺𝟑 ∞ ∞ 0 10*125 11 12 175
 0 0 0 0 175 0

Table 20. Next utilizing the above Algorithm and goes to head 
 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑫𝟏 𝑫𝟐 𝑫𝟑𝑫𝟏 0 8 0 0 ∞ ∞ 0𝑫𝟐 7 11 0 ∞ 0 ∞ 0𝑫𝟑 0 0 12 ∞ ∞ 0 0𝑺𝟏 0 ∞ ∞ 6*25 7 4*175 0𝑺𝟐 ∞ 0 ∞ 8 11 5*100 0𝑺𝟑 ∞ ∞ 0 10*125 11*175 12 0
 0 0 0 0 o 0

Transportation cost= 6x25+4x175+5x100+10x125+11x175=4,525 
6. Conclusion 
Any mathematical algorithm's modification is a never-ending process to achieve the best possible result. This 
paper presents some new strategies for taking care of the maximal network flow problem with applications to 
solving the transportation problem. By means of this, we expect to propose an algorithm that will realize maximum 
flow in a network flow problem, including a lower number of augmentations. For this, we considered different 
kinds of algorithms, for example, Ford-Fulkerson, Edmonds-Karp, Md. Al-Amin Khan, Faruque Ahmed, Chintan, 
and Deepak Garg, modified Edmonds-Karp algorithms. This proposed algorithm requires fewer iterations and 
augmentations to obtain maximum flow in a network flow problem more precisely in comparison with the other 
prominent algorithms. In addition, Transportation of product dissemination from several original points to several 
destinations minimizes the cost of transportation. Numerous researchers have focused on solving this problem by 
utilizing various approaches. The Northwest, Least Cost, and Vogel's Approximation methods are the most 
noticeable and renowned for finding an initial feasible solution for a TP out of all the existing methods and 
techniques in the writing. The Modified Distribution (MODI) Method and the Stepping Stone Method are the most 
acceptable methods for finding the minimal total cost solution to the transportation problem. These well-known 
techniques for minimizing total cost begin with an Initial Feasible Solution (IFS). In this way, an IFS acts as the 
foundation of an optimal cost solution technique for any TP. The better the IFS, the fewer iterations it takes to 
reach the optimal solution. However, in this research paper, we discuss a new alternative method, a modified max 
flow algorithm, which often gives an optimal solution to the transportation problem. 
In this research paper, we first examine different initial solutions, giving methods to achieve initial, feasible 
solutions to balanced and unbalanced transportation problems. The TPMFP is extremely straightforward, 
straightforward, and simple to actualize. This strategy requires a minimum number of steps to achieve optimality 
as compared to the existing methods. The comparative assessment shows that both the new method and existing 
methods are proficient when compared with the considered approaches of this paper in terms of the quality of the 
solution. However, in practice, when researchers and practitioners deal with large-sized transportation problems, 
since the existing well-known exact optimal cost solution method (SSM) deals fully with the path tracing 
technique, it becomes very difficult to solve large-scale transportation problems. Subsequently, we intend to 
devote ourselves in the near future to proposing an alternate optimal approach that gets rid of this difficulty. 
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Appendix A  
Unbalanced Transportation Problems  
Problems Data of the problems 
UTP-1  𝑐 = [6 10 14;  12 19 21;  15 14 17], 𝑠 = [50, 50, 50], 𝑑 = [30, 40, 55]  

UTP-2  𝑐 = [10 8 4 3;  12 14 20 2;  6 9 23 25], 𝑠 = [500, 400, 300], 𝑑 = [250, 350, 600, 150] 
UTP-3 𝑐 = [12 10 6 13;  19 8 16 25; 17 15 15 20; 23 22 26 12], 𝑠 = [150, 200, 600, 225],𝑑 = [300, 500, 75, 100] 
UTP-4  𝑐 = [5 8 6 6 3;  4 7 7 6 5;  8 4 6 6 4], 𝑠 = [800, 500, 900], 𝑑 = [400, 400, 500, 400, 800]  
UTP-5  𝑐 = [5 4 8 6 5;  4 5 4 3 2;  3 6 5 8 4], 𝑠 = [600, 400, 1000], 𝑑 = [450, 400, 200, 250, 300] 
 
Appendix B 
Balanced Transportation Problems  

Problems Data of the problems 

BTP-1  𝑐 = [4 3 5; 6 5 4;  8 10 7], 𝑠 = [90, 80, 100], 𝑑 = [70, 120, 80]  

BTP-2  𝑐 = [4 6 9 5; 2 6 4 1;  5 7 2 9], 𝑠 = [16, 12, 15], 𝑑 = [12, 14, 9, 8] 
BTP-3 𝑐 = [5 7 10 5 3;  8 6 9 12 14; 10 9 8 10 15], 𝑠 = [5, 10, 10], 𝑑 = [3, 3, 10, 5, 4] 
BTP-4  

𝑐 =[12 4 13 18 9 2;  9 16 10 7 15 11; 4 9 10 8 9 7; 9 3 12 6 4 5; 7 11 5 18 2 7;  16 8 4 5 1 10],𝑠 = [120, 80, 50, 90, 100, 60], 𝑑 = [75, 85, 140, 40, 95, 65]  

BTP-5  
𝑐 = [12 7 3 8 10 6 6;  6 9 7 12 8 12 4; 10 12 8 4 9 9 3; 8 5 11 6 7 9 3; 7 6 8 11 9 5 6],  𝑠 =[60, 80, 70, 100, 90], 𝑑 = [20, 30, 40, 70, 60, 80, 100] 

 
Appendix C  
Profit maximization Transportation Problems 

Problems Data of the problems 
MTP-1  𝑐 = [6 4 1 5;  8 9 2 7;  4 3 6 2], 𝑠 = [14, 18, 7], 𝑑 = [6, 10, 15, 8]  

MTP-2  𝑐 = [14 19 7 5;  16 6 12 9;  6 16 5 20], 𝑠 = [10, 12, 18], 𝑑 = [9, 14, 7, 10] 
MTP-3 𝑐 = [16 14 11 25; 18 29 12 27;  14 23 16 12], 𝑠 = [140, 180, 70], 𝑑 = [60, 100, 150, 80] 
MTP-4  

𝑐 =[35 22 33 16 20 12;  14 21 28 30 15 24; 55 18 17 29 26 19; 21 16 15 17 31 28;  45 23 16 11 22 50], 𝑠 =[320, 180, 200, 300, 300], 𝑑 = [225, 225, 200, 200, 275, 175]  

MTP-5  𝑐 = [10 18 2;  9 8 20;  14 21 7;  12 2 25], 𝑠 = [500, 250, 350, 600], 𝑑 = [300, 600, 800] 
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Appendix D  
Problems Data of the problems 
BTP-1 (Ekanayake, 2020) 𝑐 = [6,8,10; 7,11,11; 4,5,12], 𝑠 = [150,175,275], 𝑑 = [200,100,300]  

BTP-2 (Ahamad, 2017)  𝑐 = [15,7,25; 8,12,14; 17,19,21], 𝑠 = [12,17,7], 𝑑 = [12,10,14] 
BTP-3 (Khan, 2015) 𝑐 = [3,6,8,4; 6,1,2,5; 7,8,3,9], 𝑠 = [13,28,17], 𝑑 = [15,19,13,18] 
BTP-4 (Ekanayake, 2020)  𝑐 = [4,6,8,8; 6,8,6,7; 5,7,6,8], 𝑠 = [40,60,50], 𝑑 = [20,30,50,50]  

BTP-5 (Ahamad, 2017) 𝑐 = [5,7,10,5,3; 8,6,9,12,14; 10,9,8,10,15], 𝑠 = [5,10,10], 𝑑 = [3,3,10,5,4] 
BTP-6 (Deshmukh, 2012) 𝑐 = [4,1,2,4,4; 2,3,2,2,3; 3,5,3,4,4], 𝑠 = [60,35,40], 𝑑 = [22,45,20,18,30] 
BTP-7 (Ekanayake, 2020) 𝑐 = [7,5,9,11; 4,3,8,6; 3,8,10,5; 2,6,7,3], 𝑠 = [30,20,25,15], 𝑑 = [30,30,20,10] 
BTP-8 (Ekanayake, 2020) 

𝑐 = [25,14,34,46,45; 10,47,14,20,41; 22,42,38,21,46; 36,20,41,38,44], 𝑠 =[27,35,37,45], 𝑑 = [22,27,28,33,34] 
BTP-9 (Khan, 2015) 𝑐 = [7,10,7,4,78; 5,1,5,5,3,3; 4,3,7,9,1,9[4,6,9,0,0,8], 𝑠 = [5,6,2,9], 𝑑 = [4,4,6,2,4,2] 
BTP-10 (Uddin, 2016) 

𝑐 = [73,40,9,79,20; 62,93,96,8,13; 96,65,80,50,65,57,58,29,12,87; 56,23,87,18,12], 𝑠 =[8,7,9,3,5], 𝑑 = [6,8,10,4,4] 
  
Appendix E 

Problems Data of the problems 
UTP-1 (Girmay, 2013) 𝑐 = [4,8,8; 16,24,16; 8,16,24], 𝑠 = [76,82,77], 𝑑 = [72,102,44]  

UTP-2 (Ahamad, 2017) 𝑐 = [10 8 4 3;  12 14 20 2; 6 9 23 25], 𝑠 = [500, 400, 300], 𝑑 = [250, 350, 600, 150] 
UTP-3 (Ahamad, 2016) 

𝑐 = [12 10 6 13; 19 8 16 25; 17 15 15 20; 23 22 26 12], 𝑠 = [150, 200, 600, 225],𝑑 = [300, 500, 75, 100] 
UTP-4 (Ahamad, 2016) 𝑐 = [5 8 6 6 3;  4 7 7 6 5; 8 4 6 6 4], 𝑠 = [800, 500, 900], 𝑑 = [400, 400, 500, 400, 800]  

UTP-5 (Khan, 2015) 𝑐 = [5 4 8 6 5;  4 5 4 3 2; 3 6 5 8 4], 𝑠 = [600, 400, 1000], 𝑑 = [450, 400, 200, 250, 300] 
UTP-6 (Khan, 2015) 𝑐 = [4,5,6, ; 3,1,5; 2,4,4], 𝑠 = [12,11,7], 𝑑 = [6,5,8]  

UTP-7 (Khan, 2015) 𝑐 = [25,17,25,14; 15,10,18,24; 16,20,8,13], 𝑠 = [300,500,600], 𝑑 = [300,300,500,500]  
UTP-8 (Ekanayake, 
2020) 

𝑐 = [5,4,8,6,5; 4,5,4,3,2; 3,6,5,84], 𝑠 = [600,400,1000], 𝑑 = [450,400,200,250,300]  

UTP-9 (Khan, 2015) 
𝑐 = [10,2,16,14,10; 6,18,12,13,16; 8,4,14,12,10; 14,22,20,8,18], 𝑠 =[300,500,825,375], 𝑑 = [ 350,400,250,150,100]  

UTP-10 (Uddin, 2016) 𝑐 = [42,48,38,37; 40,49,52,51; 39,38,40,43, ], 𝑠 = [160,159,190], 𝑑 = [80,90,110,160]  
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