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Abstract  

To complement experimental study, in-silico molecular docking was carried out to access and understand the 
interacting binding energy dynamism of some experimental potent anti-epilepsy compounds on the GABAT 

enzyme’s (A causative agent for epilepsy disorder) binding site. The Autoduck vina docking option of Pyrx 
multipurpose simulation software was used in this study to perform docking simulations. Four anti-epilepsy drug 
(AED) candidates was designed (Anti-epilepsy disorders) through a structural based drug technique. All the 
designed AED candidates shows stable binding interaction energies. Out of the four designed compounds, 
9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine shows better binding energy with GABAT. The docked 
energy score of the compound (7.8Kcal/mole) was better than the binding energy scores of the standard 
anti-epilepsy compounds, Carbamazepine (-6.5kcal/mole) and Valproate (-4.5kcal/mole). With this level of 
interaction, this drug candidate could bind better on the enzyme’s binding site. Also, the pharmacokinetic 
properties investigation revealed that all designed AED candidates could be synthesized easily, absorbed, 
distributed, metabolized and excreted from the body. Therefore, this drug candidate could be synthesized and 
used effectively for the treatment and management of epilepsy disorder. 
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1. Introduction 
Over thirty-nine (39) neurological disorders that arise as a result of human seizures are broadly called epilepsy 
(McCormick and Contreras, 2001). Depending on the global population at any time, this neurological disorder 
was reported to afflict over 0.99-1.7% of our population (McNamara, 2001). This account for approximately 500 
million of the present 7.8 billion of the world population (Abdulfatai et al., 2016). Presently, 25-35% of the 
anticonvulsant drugs in use has not been completely effective in stabilized this disorder (Wang et al., 2014; 
Meador and Newer, 2003).  
For the last decade, tremendous improvement in the designing of many anticonvulsant drugs has been witnessed 
from aryl semicarbazones, valproic acid, Phenobarbital, benzodiazepines and phenytoin to vigabatrin (Abdulfatai 
et al., 2016). Research shows that the Gamma-aminobutyric acid transferase (GABAT) has been a standard 
receptor for most of the AEDs. Inhibiting the activities of this receptor has been reported to be effective in 
reducing the human seizure disorder (Stangler et al., 2002; Storici et al., 1999). The plan to design alternative 
AEDs without prolong side effects has been the desire of many pharmaceutical researchers (Abdulfatai et al., 
2017; Meador and Newer, 2003).  
In recent times, many pharmaceutical companies have developed an interest in the usage of the in-silco method 
of drug development (Abdulfatai et al., 2017; Meador and Newer, 2003; Abdulfatai et al., 2020). This method is 
simple, fast and reliable and has shown to be very important in designing better drug candidates for different 
ailments. In this case, the in-silico method of drug design can be used to screen large structures of potent AEDs 
compounds. These potent structures can be modified to obtain better potent compounds against convulsion 
(Langer and Hoffmann, 2001; Kitchen et al., 2004). To complement the experimental work of Wang and his 
co-researchers (Wang et al., 2014), the molecular docking simulation technique was used to design more potent 
AEDs that will be able to inhibit the GABAT receptor (A causative agent for epilepsy). 
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2. Materials and Methods 
2.1 Receptors and Ligands Collections 
Some set of reliable experimental anti-epilepsy data sets along with their properties, which were made up of nine 
(09) potent compounds were collected from the work of Wang and his co-researchers (Wang et al., 2014). These 
selected experimental AEDs were shown to possessed better activities than co-compounds in the literature. The 
reliable data sets were drawn with the aid of chemdraw software into 2D structural forms (Table 1) and saved in 
cdx format. To make the atoms of the compounds energetically stable (to look real), the drawn structures were 
geometrically optimized with the aid of DFT (Density functional theory) algorithm of Spartan 14 software. 
Moreover, the GABAT in figure 1 was successfully retrieved from the protein data bank 
(http://www.rcsb.org/pdb).  
Table 1. Two dimensional structures of some anticonvulsant and their anti-convulsion activities 

S/N 2D structures Anti-convulsion activities (ED50)
 
 
1 

 

 
 

51.2 

 
2 

 

 
51.9 
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43.9 
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31.5 
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33.2 
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23.4 
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61.4 

 
8 

 
67.5 

 
9 

 

 
66.5 

 

Figure 1. Gamma-aminobutyric acid transferase (GABAT) receptor 
2.2 Molecular Docking Simulation Learning Methodology 
The Autoduck vina docking option of Pyrx multipurpose simulation software was used in this study to perform 
docking simulations. Both the receptor and the ligands were adequately prepared, saved in pdf format with help 
of discovery studio software, uploaded into the pyrx software and converted to pdqt format. GABAT receptor 
(Figure 1) and the ligands (Table 1) were transferred unto the X, Y and Z grid of the pyrx software interface after 
which autoduck vina option of the software was invoked. After several minutes of selective ligand poses on the 
binding site of the GABAT enzyme, the docked pose with the best orientation binding energy was selected, 
analyzed and recorded (Kitchen et al., 2004). 
3. Results and Analysis 
3.1 Assessment of Molecular Docking Binding Energy  
The investigation of the molecular docking study was carried out to access and understand the interacting 
binding energy dynamism of some obtained experimental (Table 1) potent anti-epilepsy compounds on the 
GABAT enzyme (Figure 1). In table 2, all the selected (most potent AEDs) anti-epilepsy drug candidates were 
found to have docking scores ranges of -5.1 to -6.8 kcal/mol. The 9-decyl-6-(1H-1,2,4-triazol-1-yl)-9H-purine 
(S/N = 6) with the dynamic docking score of -6.8 kcal/mole was found to be the only AEDs with the 
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highest/better binding energy among the co-compounds (Table 2). Therefore, 9-decyl-6-(1H-1, 2, 
4-triazol-1-yl)-9H-purine could function well by inhibiting the activities of GABAT on the binding site. This is 
because the magnitude of the docking scores is directly proportional to the capacity to initiate ligand-protein 
actions.  
Table 2. Two-dimensional structures of anti-epilepsy compounds and their binding energies 
S/N 2D structures Binding 

Affinity   
Kcal/mole
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3.2 Novel Anti-Epilepsy Compounds Designs and Analysis 
Computational drug design is the process of using software and computer to virtual design new drug that ought 
to be designed physical with the help of laboratory reagents and test tubes. In this case, to design reliable AEDs, 
structure-based drug design was used to carry out new structural modifications by; (i) investigating the docking 
binding energies on the experimental compounds, (ii) identifying the compound with the best docking score, and 
(iii) performing structural modification on the selected ligand/compound.  
 

 
 
 
 
 
 
 

 
Figure 2. 2D and 3D structure of the template drug candidate 

The 9-decyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine (S/N = 6) with the dynamic docking score of -6.8 kcal/mole 
was found to be the only AED candidate with the highest/better binding energy among the potent co-compounds 
(Table 2). Therefore, it was chosen as the drug candidate template to which further structural modification was 
made (Figure 2). The addition of CH3 and N across the template structure in figure 2 shows some dramatic 
improvement in binding energy scores (Table 3). To calculate the binding energy of the new compounds, all the 
new structures were converted to 3D, geometrically optimized with DFT B3LYP/6-31G of Spartan 14 software 
and saved in the pdb format. Thereafter, the 3D improved structures were exported into the pyrx software, 
converted to pdbqt and subsequently docked into the binding site of GABAT receptor model. The docked energy 
scores of all the newly designed AEDs (Table 3) were analyzed to be better than the experimental calculated 
energy scores in table 2. The average docking energies range of the newly designed epilepsy inhibitors was 
calculated to be -6.9 to -7.8 kcal/mole. The 9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine was found to 
be the AED with the highest docking score of 7.8 kcal/mole. The docking score of this drug candidate was also 
found to be better/higher than the commercially sold anti-epilepsy drug (Table 3).  
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Table 3. 2D structures, names of the designed anti-epilepsy compounds and their binding energies 
S/N 2D designed structures Designed binding energies 

Kcal/mol 
 
 
1 

                   

3-decyl-7-(1H-tetrazol-1-yl)-3H-[1, 2, 3] triazolo [4, 5d] pyrimidine 

  
 

-6.9 

 
 

2 

 
9-decyl-2-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine 

 
 
 

-7.2 

 
 
3 

 
9-decyl-2-methyl-6-(1H-tetrazol-1-yl)-9H-purine 

 
 

-7.3 

 
 
4 

 
9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine 

 
 

-7.8 

 
 

Stan-dard 

 
Carbamazepine 

 
 

-6.5 

Stan-dard 

 
Valproate 

 
 

-4.5 

In Figure 3, Arginine (ARG 69), Isoleucine (ILE 23), Leucine – (LEU 57 and 65), Lysine – (LYS 50), Glutamine 
(GLU 19), Valine (VAL 53), Tyrosine (TYR 51), Glutamine (GLU 19) and Proline (PRO 54) amino acids were 
found to forms van der waal, conventional hydrogen and carbon-hydrogen bonds with the structure of 
9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine. This anti-epilepsy drug candidate was also analyzed to 
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form a hydrogen bond length of 2.96 Ao with Leucine (LEU 52) amino acid through the second nitrogen atom. The 
bonds of the 9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine formed with the various amino acids were 
responsible for the excellent binding energy score of 7.8kcal/mole. This energy score was found to be better than 
the other energy scores of other co-designed drug candidates in table 3. Therefore, the interactions of 
9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine was found to be strong enough to inhibit/reduces the 
activities of GABAT, since the hyperactive GABAT has been reported to be responsible for convulsion (Stangler et 
al., 2002; Storici et al., 1999). All the docking energy scores of the four designed anti-epilepsy compounds 
(Table 3) were better than the binding energy scores of the standard anti-epilepsy compounds, Carbamazepine 
(-6.5kcal/mole) and Valproate (-4.5kcal/mole). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 

Figure 3. 2D ligand structures (A and B) binding site amino acids of GABAT receptor 
3.3 The ADMET Study of the Best Docked Anticonvulsant Compound 
For any designed drug to get to the target site in the living body, the rules of five properties, ADMET 
(absorption, metabolism, distribution, toxicity and elimination) which guide the smooth movement of drug 
candidate must be examined (Xu et al., 2012). Figure 4 show the best structurally designed AED compound 
(9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine) and its ADMET rules of five properties. The outcomes 
of pharmacokinetic analysis show that the 9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine with the best 
binding energy of 7.8kcal/mole has high gastrointestinal absorption capability and high blood-brain barrier (BBB) 
permissibility (Figure 4). This drug candidate has favorable solubility and permeability properties since it shows 
moderate water solubility and better lipophilicity (Consensus Log Po/w) properties (Figure 4). Also, the 
pharmacokinetics in-silico results in figure 4 revealed that this drug candidate (9-decyl-8-methyl-6-(1H-1, 2, 
4-triazol-1-yl)-9H-purine) has a very easy synthetic accessibility (Very easy to synthesize) and can be consumed 
by the body (bioavailability) (Lipinski, 2016; Martin, 2005; Ertl and Schuffenhauer, 2009).  



mas.ccsenet.org Modern Applied Science Vol. 15, No. 5; 2021 

74 
 

 

Figure 4. Pharmacokinetic properties of 9-decyl-8-methyl-6-(1H-1, 2, 4-triazol-1-yl)-9H-purine 
4. Conclusion 
In-silico molecular docking study was carefully used to design four AEDs through structural based drug 
designed technique. The Autoduck vina docking option of Pyrx multipurpose simulation software was used in 
this study to perform docking simulations. Four anti-epilepsy drug (AED) candidates was designed 
(Anti-epilepsy disorders) through a structural based drug technique. All the designed AED candidates shows 
stable binding interaction energies. Out of the four designed compounds, 9-decyl-8-methyl-6-(1H-1, 2, 
4-triazol-1-yl)-9H-purine shows better binding energy with GABAT. The docked energy score of the compound 
(7.8Kcal/mole) was better than the binding energy scores of the standard anti-epilepsy compounds, 
Carbamazepine (-6.5kcal/mole) and Valproate (-4.5kcal/mole). Also, the pharmacokinetic properties 
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investigation revealed that the best designed AED could be easy to synthesized, absorbed, distributed, 
metabolized and excreted. Therefore, this drug candidate could be synthesized and used effectively for the 
treatment and management of epilepsy disorder. 
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