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Abstract 
Non-Destructive Testing (NDT) methods, and especially, ultrasounds have gone from being a mere laboratory 
curiosity to an indispensable tool in the industry as a primary means of determining the level of quality achieved 
in its products (ASM, 1989; Barbero, 1999). 
This study will identify and apply the main physical phenomena of interaction of an ultrasonic wave in a 
composite material, to see if through this type of waves, you can detect defects of the type of porosity or 
delaminations in these materials. The percentages of reflected and transmitted waves in real cases of defects in 
the composite material will also be studied. It will be shown if the frequencies and intensities of the waves are 
adequate to find this type of defects or imperfections in the material. 
The theoretical study of the ultrasonic wave seeks to help researchers in the development of equipment that uses 
the methodology of immersion ultrasound for the inspection of materials in the search for 'defects' and to 
understand the physics of the test.  
Keywords: ultrasound, carbon fiber, epoxy matrix, porosity, delamination, NDT techniques 
1. Introduction 
In the last decades the operating requirements have increased, while at the same time trying to reduce the weight of 
the structures and mechanical components used for industrial purposes. This has led to the need to use advanced 
materials that have high mechanical properties along with a decrease in weight (Inasmet, 1998). The use of fiber 
reinforced polymeric matrix composites has replaced in many cases conventional materials (steel, plastic, 
aluminum, concrete, etc.). These materials have been used preferably in the aeronautical and space industry for the 
manufacture of floor panels, spoilers, rudders, depth rudders, interior and exterior ailerons, space shuttles, 
satellites, etc. where they have had a greater development because they are structures that require high values of 
resistance and specific rigidity, and in which the weight factor entails a great decrease in the cost (Sanglier et al., 
2003; Ramírez & Col, 1982; Wróbel & Wierzbicki, 2005; Ramírez López et al., 1996). 
Fiber-reinforced composite materials are also used in other sectors such as construction, wind turbines, marine, 
elite sports, automotive and other sectors such as medical and military (ImieliÉska et al., 2004; Rojek, Stabik, & 
Wróbel, 2005; Ochelski, 2004). 
These composite materials are characterized by high rigidity and mechanical resistance, high fatigue resistance, 
corrosion resistance, low weight and the possibility of selecting the appropriate orientation of the sheets for each 
specific application. Their low thermal conductivity and high dimensional stability give these materials a very 
interesting alternative in applications subject to low temperature conditions. 
The structural components of this type are made up of plate and/or beam type elements, which are subjected to 
loads perpendicular to their plane that originate a state of work in bending in which tensile and compressive 
stresses appear (Padmanabhan & Kishore, 1995; Potel et al., 1998; Scarponi & Briotti, 2000; Vaccaro & Akers, 
1996). For example, these tensile states can appear in the aerodynamic loads exerted on the wings of an aircraft.  
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From the expression 11 it is deduced firstly that the reflected acoustic pressure will be of the same amplitude, 
whatever the side of the limit surface on which the wave is incident, that is to say, independently of the sequence of 
both materials; although in the case of being Z2>Z1, R' will be positive, which indicates that the incident wave and 
the reflected wave are in phase and, in the opposite case (Z2<Z1), R' will be negative, which indicates an inversion 
of the phase of the reflected wave in relation to the incident wave. 
From the expression 12 it is deduced that although the acoustic pressure transmitted in phase with the incident, it 
will not be independent of the sequence of the two materials, so that if Z2>Z1, then T'>1, which indicates that its 
amplitude will be greater than that of the incident wave and, in the opposite case (Z2<Z1, T'<1) less. 
Finally, the balance of sound pressure, in contrast to energy or sound intensity, can be put as 

Pi + Pr = Pt, either 1 +R’ = T’ 
which implies that for balance to be maintained, the sum of the pressures must be the same on both sides of the 
interface. 
2.2 Methodology Applied to the Real Case 
The determination of possible defects in composite materials widely used in the industrial sector, is the problem to 
be addressed once established the theoretical foundations of the physical interaction of an ultrasonic wave with 
matter. 
It is important that the use of these materials at a technological and industrial level guarantees that they do not have 
defects that reduce their mechanical properties considerably, especially in critical structures. 
The main defects to be evaluated are: 

• The punctual or generalized porosity that will be basically air inclusions within the polymeric matrix that 
could have been produced by a low pressure application in the resin curing process in its manufacturing 
process or by a movement between layers after the resin has started its molecular crosslinking process 
(Heru et al., 1997). 

• In epoxy matrix carbon fiber laminates, low energy impacts cause damage that can result in dents, matrix 
cracking, fiber to matrix delamination and fiber breakage. Of all these, delamination is probably the most 
harmful due to the difficulty in detecting it and the reduction it causes in the properties (Baker; Jones & 
Callinan, 1985; Wróbel, Wierzbicki & Pawlak, 2005). The possible delaminations of a carbon fiber layer 
will be evaluated, these will be identified by the presence of air due to the detachment of successive layers 
of fiber due to lack of adhesion between them (Cantwell, Curtis, & Morton, 1986; Miyano et al., 1994). 

In Table 1, some physical and mechanical properties of some materials that will be used in the ultrasonic 
inspection process to be developed on the chosen composite material have been collected. 
Table 1. Physical and mechanical data on some materials 

Material Densidad 
Ρ (Kg/m3) 

Módulo elástico 
E (Gpa) 

Coeficiente de Poisson 
(adimensional) 

Resina epoxy 
Modificada 8552 

1100 3,4 0,4 

Fibra de carbono (AS4 alta 
resistencia) 

1790 330 0,1 

Agua 1000 --- --- 
Aire 1,22 --- --- 

In the technical inspection performed by ultrasound we will find, first the water layer, since it is an inspection by 
immersion in water, then the polymer matrix formed by an epoxy resin type, the carbon fiber used as reinforcement, 
and finally, the presence of air in the form of porosity or delamination. 
The speed of sound propagation in the different media (CL) and the acoustic impedance (Z) will be determined, 
since the amount of reflected and transmitted sound will be obtained from these parameters. It will be taken into 
account that the speed of sound in air is 340 m/s and in water 1435 m/s, and therefore, it is not necessary to 
calculate them. 
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Calculations of the percentages of acoustic intensities of reflected and transmitted waves allow more or less easily 
to determine if it is possible to detect defects (porosity and delaminations) in a material (composite). It will be 
taken into account that for the inspection of delaminations, an almost complete attenuation of the transmitted wave 
is produced, so in practice, for the search of this type of defects, it should be taken into account to work with higher 
frequencies, as well as acoustic intensities. 
4. Discussion 
Unidirectional components are not commonly used in aerospace structural components due to their high 
anisotropy of mechanical properties. Normally multidirectional laminates are used which are optimal for different 
load conditions (Miyano et al,,1986; Marsh, 2002; DobrzaÉski, 2002). Even so, it is necessary to study 
unidirectional laminates since this allows us to know how the material behaves in the direction of the fibers, since 
the sheet presents maximum properties in this direction and minimum properties in the transversal direction. The 
tested laminate presents the highest resistance and elastic module and the lowest possible thermal expansion 
coefficient in one direction. 
The study of the use of the physical phenomena of interaction of the ultrasonic wave in the composite material is an 
excellent tool to identify defects by ultrasound in this type of materials. This will help the beginners who are 
initiated in the application of this type of methodologies (especially the ultrasounds) in the laboratories to be able 
to adjust in a theoretical way the measurement devices, one of the most pronounced difficulties in this type of 
measurements. This will also provide an approximate idea of the frequency and intensity of work for certain types 
of materials and defects, reducing preparation times and costs of testing. 
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