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Abstract

Credit card fraud detection has been a very demanding research area due to its huge financial implications and
rampant applications in almost every area of life. Credit card fraud datasets are naturally imbalanced by having
more legitimate transaction in comparison to the fraudulent transactions. Literature represents numerous
studies that are aimed to balance the skewed datasets. There are two major techniques of resampling in balancing
these sets i.e. under-sampling and oversampling. However both under-sampling and oversampling techniques
suffer from their own set of problems that can seriously affect the performance of classifiers that have been
inducted for credit card studies in the past. Thus to accelerate detection of credit card fraud, it is very important
to implement the strategy that could possibly provide better predictive performance. This paper attempts to find
out what resampling technique can work best under different skewed distributions for the domain of credit card
fraud detection.

Keywords: credit card fraud detection, supervised classification, resampling techniques, class imbalance
learning

1. Introduction

Over recent years the rampant application of credit card has led many losses to financial institutions and other
recipient organizations. This has made detecting credit card fraud a hard challenge for concerned authorities.
Credit card is considered as an easy fraud target because the fraudsters can gain a lot of money in a very short
period of time and with less risk; as the fraud is detected after many days (Zareapoor & Shamsolmoali, 2015).
Credit card fraud detection has been a very arduous research area due to the losses generated by these plastic
gadgets. In 2015, according to “The Nilson Report”(Neilson, 2012), only in United States of America (USA) the
credit card fraud has increased to 12.75 cents for every $100 annually and it contributes 21.4% of the total fraud
losses across the world. In another study (Stolfo et al., 1997), it is revealed that worldwide 40% of the total
financial losses are only generated by the credit cards alone. To reduce the losses to minimum by the stolen or
misused cards, it is very necessary to block these cards as quickly as possible. Fraudsters use a lot of techniques
in attempting frauds and always look for the sensitive information related to the card stolen. In this regard the
financial institutions also adopt number of solutions to combat fraud. These techniques usually involve the
process of classifying transaction either to fraud or non-fraud.

Credit card fraud datasets have been found to be naturally skewed (He & Garcia, 2009) which mean that these
datasets have more legitimate transactions than the fraudulent ones. These imbalances between the majority and
minority classes bias the classifiers to the majority class and misclassify the instances of the class that has less
representation in the data. Usually in the classification process, class with less representation is more important
than the other classes (Rahman & Davis, 2013). In credit card fraud detection, the instances belonging to the
minority class i.e. the fraudulent transactions are of prime interest. Classification algorithms utilized in detection
of credit card fraud are often overwhelmed with the majority class (Tremblay et al., 2007, Anis & Ali, 2017 and
Shen et al., 2007) leading to bad predictive performance for the minority class. To increase the prediction rate of
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minority class, a lot of studies in literature have given numerous resampling techniques. However there are two
basic techniques which are followed widely. These include Over-Sampling and Under-Sampling or combination
of both Over-Sampling and Under-Sampling: which is called Hybrid Sampling.

e  Under-Sampling: it removes the majority samples to the desired level of imbalance.
e  Over-Sampling: generate new minority samples to the desired level of imbalance.

e  Hybrid Sampling: This implements both over-Sampling and under-Sampling techniques until we reach the
desired level of imbalance.

There is wide range of resampling techniques that are implemented for credit card frauds but among them we
have selected three mostly used resampling techniques. In this study, resampling techniques utilized and
compared are Random Over-Sampling (ROS), Random Under-Sampling (RUS) and SMOTE. In this study we
have implemented these techniques to balance the datasets. These resampling techniques provide varied
predictive performance for different classifiers. Thus we aim to explore and analyze these techniques for
classification algorithms that have been widely implemented for credit card fraud detection.

An exhaustive list of classification algorithms have been inducted for the credit card studies. However there are
some algorithms that have been extensively used for this purpose. For example Shen et al applied Decision Tree,
Logistic Regression and Neural Network to analyze their performance for credit card fraud detection (Shen et al.,
2007). Anis et al implemented the family of DTs for different levels of imbalance for credit card fraud (Anis et
al., 2015). Brown and Mues also analyzed different classification models for a set of skewed levels to check
predictive performance for the minority class in credit scoring (Brown & Mues, 2012). Peng et al ranked the
most implemented classification algorithms for the credit card frauds (Peng et al., 2011). Considering the studies
that have been specifically formulated to find the best classification algorithms, we utilized two famous and
widely implemented algorithms that include, Decision Trees and Support Vector Machine. West and
Bhattacharya presented a comprehensive literature review of financial fraud detection studies and found that
Logistic Regression, Bayesian Belief Network, Support Vector Machines, Logistic Regression, Neural Network
are the algorithms that perform optimally for credit card fraud (West & Bhattacharya, 2016 and Zhang &Zhou,
2004).

2. Methods

As explained in section 1, objective of this paper is to explore resampling strategies in balancing the imbalanced
datasets for the classification algorithms. Thus we will provide a brief overview of the classification algorithms
and notation for the problem statement and the resampling strategies and the evaluation metrics that have been
implemented for this study.

2.1 Classification Algorithms

Decision Trees: Decision Tree is a technique of classifying data by generating a tree like structure. This tree has
internal nodes that represent binary choices for each attribute whereas the branches of the tree symbolize the
outcomes of that choice (Breiman, 2001). These nodes are created in such a way that the samples could be
traversed using them. Decision Trees have many types e.g. Classification and Regression Trees (CART), J48 and
Random Forest etc. Among the family of DT’s Random Forest (RF) or decision forest is the widely used
classification tree (Breiman, 2001). RF is collection of trees that are created to minimize the risk of over training
the samples and to avoid the instability with in a single tree (Bhattacharyya et al., 2011). Another technique in
DTs is pruning: which is used to reduce overfitting. Pruning removes the nodes of a DT without affecting the
overall performance of a tree. Pruning also makes RF robust to noise and over training of samples. In RF each
tree is created independently with little complexity and thus it requires tuning of only two parameters that
include number of attributes and number of trees at each node. This process makes the generation of RF very
simple (Bhattacharyya et al., 2011).

Support Vector Machine: Support Vector Machine (SVM) was developed by Vapnik, 1995. It is a
classification technique of mapping linear functions to higher dimensional space. This enables a nonlinear
complex classification problem to be solved linearly with minimum computational complexity. SVM uses a
kernel function for the transformation of data to high dimensional space. Kernel function is defined as a linear
mapping between the data and a high dimensional space. Mathematically it is given by:

k(x1,x3) = (@(x1), p(x3))
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Where ¢:X — H represents a mapping from function X to the higher dimensional space H. After the
implementation of kernel function a hyper plane is generated to classify the data points to their respective classes
and is defined as:

w.0(x)+b=0
This hyper plane is constructed to have maximum separation between the instances of both the classes. Thus the
final classification of SVM can be defined as:
n
2 o yik(x;,x) +b =0
i=1
3. Problem Statement and Notations

This section will define the problem statement and the necessary notations that have been utilized in resampling
and classification of credit card fraud datasets. As the credit card fraud transaction has to be classified to either
legitimate or fraudulent, therefore we will consider a binary classification problem. Consider a data set D
having m elements. Then D = (x;,y;)i2,. Where x; is a set of d-dimensional transactions and y;gives the
labels i.e.y; = {0,1}. Here 0 & 1 represents majority and minority classes respectively. Let

Dpmaj = {(x;,yi) € Dly; = 0} &
Dpmin = {(xi,y1) € Dly; = 1}.

As credit card fraud datasets are imbalanced where this imbalance can be described by defining an imbalance
ratio i.e.
Dmaj
IR(D) Do
It is worth to note that higher ratio of IR(D) will give more skewed dataset. Thus our aim is to resample the
dataset by lowering the IR(D). For IR(D) =1 we will acquire a fully balanced dataset. Every standard
classification problem is modeled on some training data whereas the modeled is verified using the test data. Here
we assume that D is the training data that needs to be resampled. Learning a classifier from imbalanced training
set D can be done in two stages. In the first phase the dataset D is resampled such that a desired imbalance
ratio IR(r(D) is achiever whereas IR(r(D)) < IR(D). This is performed by dropping majority transactions or
by adding new minority samples that will be generated synthetically. After performing the resampling a standard
classification function C is learned on resampled dataset r(D) to generate a model C.pythat maps all the
instances in m- dimensional space to the target set {0,1} i.e. Cypy: R™ — {0,1}.

Next step is to validate the model C.py by checking its performance on the test set Diegcusing classifier C. For
this purpose performance of any classifier is determined using performance metrics P for which the input is the
trained model on the resampled dataset C.py and Dies; to produce better classification metrics. Higher values
of these metrics give a better predictive model. In order to find the performance of the parameter r on the
classifier C, k-fold cross validation is implemented during the training phase.

4. Resampling Techniques

Each resampling method r considered in this study, will follow a schematic way given below.

It will take input of training dataset for the resampling. A resampling multiplier 1 will be adjusted so that
IR(r(D)) = % IR(D) where, 1> 1. 1 is called the resampling multiplier that is used to regulate the amount of
resampling.

Training dataset will be modified by adding new minority samples (oversampling) or by reducing the majority
samples (undersampling). This will be done according to the method implemented for resampling.

Finally we get a resampled dataset r(D) that can be classified using classifier C where IR(r(D)) < IR(D).
Now we explain the resampling techniques we will use in this paper.
4.1 Random Undersampling

Random Under-Sampling is an effective technique that tends to eliminate the majority samples from the training
data. A number of studies point towards the effectiveness of this sampling technique. In a study presented by Liu,
it was found that by reduction of majority samples in large number can bring significant savings in terms of the
training time and memory that is required in building a training model (Liu, 2004). However, randomly
eliminating majority instances by great number can lead to drop useful information necessary in building a
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model that can detect more minority samples. It was suggested in Ganganwar, that RUS procedure should be
performed on larger datasets idyllically as the larger datasets are acceptably redundant in majority samples, thus
most of the data to be discarded is redundant in nature (Ganganwar, 2012). In another study, it revealed RUS as
the naivest and most frequently used resampling technique. Major drawback faced by RUS technique is that the
amount of information withdrawn from the training data cannot be controlled (Krishnaveni & Rani, 2011).
Despite the fact, that this technique can affect the classifiers performance, RUS have been considered as the most
effective technique and can outperform certain other sophisticated techniques (Wang et al., 2008).

RUS is performed until both the classes (i.e. majority and minority) have same number of samples. Also RUS
does not take in to account any additional parameters. For this study, a random subset of Dp,,; with
1-1
|Dmaj | (T)
samples that will be withdrawn. All the samples in Dp,,; have equal probability to be selected for the process of
under-sampling.

4.2 Random Oversampling

Random Over-Sampling (ROS) inclines to increase the number of samples of the minority class. ROS until they
represent a balance number of samples with respect to the majority class samples in the training data. A detailed
analysis of over-sampling is given by Chawla in which the importance of over-sampling has been emphasized
(Chawla et al., 2002). ROS retains the existing information of the dataset in contrast to RUS. However, the
shortcomings of ROS were marked and significantly include need of large memory and longer time in training
the model because of greater number of samples for both classes (Wang et al., 2008). In another study, it was
further pointed out that ROS create an issue of overfitting due to replication of minority instances and thus the
model cannot be generalized to the new data (Ganganwar, 2012).

Despite the fact that this technique holds certain limitations, Liu insisted the use of ROS as a very effective
procedure of resampling (Liu, 2004). In his study, it was suggested to generate new minority instances from the
existing training data rather generating new instances from the new training set could possibly bias the process of
random selection of instances.

In this study, minority sample will be randomly generated until they become equal in number with the majority
samples. For this purpose, |Dpyinl(1 — 1) minority samples are added to the training set.

4.3 SMOTE

SMOTE stands for Synthetic Minority OverSampling Technique. This novel technique was presented by Chawla
et al., 2002. SMOTE mainly creates a new sample by interpolation of existing minority samples that lie together.
For any original sample Xx;, it randomly selects one or more k nearest neighbors of x; and performs
interpolation of the existing sample and its neighbor and creates a new sample. More specifically, it follows the
subsequent procedure in creating new samples. SMOTE takes the difference between x; and its nearest
neighbor, this difference is multiplied by a random number between 0 and 1. Finally this is added to the original
sample x; to get a new sample Xpew. This technique forces the decision region of the minority class towards
the majority space that can effectively reduce the problem of overfitting. Although SMOTE significantly
improves the performance of minority class, it hinders the performance of classifiers by assigning the same
sampling rate to each neighboring instance of X;. To overcome this problem, certain SMOTE based studies have
been proposed to assign different weightings to the neighboring minority class instances for x;, e.g. (Lu & Ju,
2011 and Ngai et al., 2011). SMOTE uses an additional parameter k for defining the sampling rate. FOR this
study we have implemented SMOTE for k=5.

Following procedure is adopted in synthetically generating new minority samples.

1. Initialize a new set Dy, = @.

2. To generate new samples, following steps have been repeated |D,;, [ (I — 1)times:

i)  Randomly select x; € Dyy;p.

i) Find k nearest neighbors of x;. Randomly choose any nearest neighbor and call it x;.
iii) Interpolate these two samples in the following way to find new sample for x;:

Xnew = X + a(x; — x;) ae[01]

iv) Label all new samples as the minority class samples and add to D,

95



mas.ccsenet.org Modern Applied Science Vol. 14, No. 7; 2020

3. Add the newly generated samples to the set D i.e. D = Dy + Diin+Dipgj
4.4 Performance Measures

The most common measure in classification is accuracy. However, high accuracy does not imply that all the
fraudulent transactions have been classified correctly. Cost of misclassifying fraudulent transaction is far greater
than misclassifying legitimate transaction in credit card fraud detection. As accuracy of any classifier cannot
characterize the performance for the minority class, it is considered to be a biased metric. Other than accuracy,
there have been other measures developed by the data mining community. An assortment of these metrics is
based on a confusion matrix that is illustrated in Table 1. Confusion matrix is a 2x2 matrix with 4 elements
described under:

Table 1. Confusion Matrix

Actual Class Predicted Class

Positive Negative
Positive TP (Hit/Fraud catch) FN (Miss)
Negative FP (False Alarm) TN (Normal)

True Positive (TP) represents the accuracy for the fraudulent (positive) examples. It explains how many positive
examples have been labeled correctly. TP rate is also called sensitivity or recall. Similarly True Negative (TN)
rate defines how many legitimate examples are classified correctly. It is also called specificity. False Negative
(FN) detects the number of positive examples classified as negative where as True Negative (TN) represents
negative examples predicted negative. Performance measures utilized in this study are based on the elements of
the confusion matrix. These evaluation metrics are defined as follows.

TN

TN + FP
TPXTN —FP XFN

- JTP+FP)(TP + FN)(TN + FP)(TN + FN)

(1 + B?)Precision X Recall
(B?. Precision + Recall)

Recall =

McCC

F —measure =

Whereas f =1 and
TP

p . . -
recision TP + FP

5. Experimentation

Credit card fraud detection is an area of fraud detection that is more explored during recent years. The methods
adopted to detect credit card fraud support an auto detection of fraudulent behavior among the given transaction.
However, there are some constraints t this domain follows either naturally or due to some restrictions imposed
by the financial institutions. Firstly the credit card datasets are heavily skewed (Juszczak et al., 2008 and He et
al., 2008)and the real datasets are mostly not provided by the financial institutions (Lu & Ju, 2011 and Ngai et al.,
2011) due to privacy concerns of the customers. Also the datasets available have very low number of samples
which becomes the cause of not learning all the rules by the classifier. In this paper we are utilizing 3 datasets. 2
datasets, German Credit Card and Australian Credit Card datasets have been taken from UCI repository
(Asuncion & Newman, 2010). These datasets have been implemented in most of the studies (Peng et al., 2011,
West & Bhattacharya, 2016 and Li et al., 2013). Third dataset, Give Me Some Credit (GMSC) have been
obtained from kaggle repository that was used for a competition. All the dataset utilized in this paper contain
different ratios of fraud and non-fraud transactions (www.kaggle.com). For all datasets, 70% of the data is kept
for the training and validation while 30% is used for the testing purpose. As the credit card datasets are
extremely skewed, each training dataset, D is altered to have imbalance ratios of D; wherei = 1,2,3,4. These
datasets contains different ratios of fraud transactions i.e. 5%, 10%, 20% and 30%. Each D; is further
bifurcated to its corresponding majority and minority class instances se i.6.  Djya; and Djpi, for application of
corresponding resampling method r.

For the classification of three datasets, we selected two classifiers that have been explained in section 1. The
classifiers SVM and DT are executed using default parameters. For SVM radial kernel was used. Classification
is implemented using 10-fold cross-validation. This means that during the training phase the dataset have been
divided in to 10 equal parts. Among 10 parts, 9 have been used to build model while 1 part of the training data is
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used to validate the model. This process is repeated until every part of the training data is utilized for the
validation process.

6. Results and Discussion

In this paper, we have analyzed three mostly implemented resampling techniques for imbalanced datasets along
with no resampling. Results for the three datasets using two classifiers are presented from Figure 1 to Figure 3.
For all the datasets, we utilized four imbalanced distributions and the results of resampling techniques have been
given for three performance metrics defined in Section 2. Results for each resampling technique are plotted
separately against different imbalance ratios for respective evaluation metrics.

For Australian dataset, results are presented in Figure 1. Although “no resampling” has not achieved good
performance but in some cases it has performed optimally than all the other resampling techniques for both
classifiers. SMOTE and ROS approximately performed equivalently for all the distributions whereas RUS
performed well only for TP rate for both classifiers. Similarly for German dataset, results are depicted by Figure
2. RUS performs optimally for all the distributions. It has been perceived that when data is not extremely skewed
i.e. for 70:30 and 80:20, SMOTE gives better results but for the extreme distribution datasets i.e. 90:10 and
95:05, it fails to achieve better scores like previous datasets for both the classifiers. Here also no resampling
achieved insignificant performance for both classifiers.

For the dataset GMSC, results are depicted in Figure 3. It can be seen that for both the classifiers, as the
imbalance ratio is increased, no resampling either fails to provide better evaluation metrics or the performance
get worse with increasing ratio of imbalance. However for other resampling techniques, SMOTE performs well
for all the metrics. RUS also provide better results for highly imbalanced datasets of GMSC. Similar behavior is
observed for ROS.

(a) TPR (Australian-RF) (b) F-measure (Australian-RF) (¢) MCC (Australian-RF)
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Figure 1. Performance of classifiers for Australian dataset in terms of TP rate, F-measure and MCC
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Figure 2. Performance of classifiers for German dataset in terms of TP rate, F-measure and MCC
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Figure 3. Performance of classifiers for GMSC dataset in terms of TP rate, F-measure and MCC

In summation for all the datasets, the results do not provide dominance of any resampling technique over another.
However it has been noticed that every resampling technique is giving highest performance score for certain
evaluation metric e.g. in almost all the cases TP rate has been achieved by the RUS approach. Similarly for
F-measure SMOTE and ROS out rule RUS whereas no resampling fails to provide better performance score in
all datasets except for some measures. This implies to choose resampling techniques very carefully else the
performance of the classifier will be adversely affected as for some cases the resampling techniques have
performed worse than even no resampling. This shows that not all imbalanced datasets require resampling
techniques.

Quality of datasets is also an important factor affecting the predictive performance of classifiers. Performance of
resampling technique is highly dependent on the classifier selected for the prediction e.g. for German dataset,
SMOTE has performed equivalently to no resampling for RF when the dataset becomes extremely skewed
whereas for the same dataset, SMOTE achieved best evaluation metrics for SVM. In certain cases it has been
also observed that at extreme distribution the resampling techniques are performing very well however, the same
techniques are not presenting optimal performance for the other dataset at the same distribution. Thus it is very
important to know to what extent these resampling techniques can be implemented because balancing the
datasets does not guarantee to have good metrics of prediction.

7. Conclusion

This study has looked at the comparison of widely used traditional resampling techniques and no resampling for
credit card fraud detection. For this purpose, performance of three credit card datasets with varying levels of
imbalance was assessed using three evaluation metrics. After the analysis of these techniques it is concluded that
generally resampling improves the performance of imbalanced datasets in most of the cases. It is necessary to
know to what extent the data can be resampled for different levels of imbalance. Balancing the dataset does not
provide an optimal performance in all cases and can deteriorate the performance of imbalanced datasets.
Moreover there cannot be any unanimous choice for resampling techniques for credit card imbalanced datasets
and very unexpectedly there exist some cases for which no resampling can be a better choice. Thus in order to
improve the classification results for imbalanced credit card datasets one needs to specify an optimal resampling
technique and should also consider no resampling. It is also important to know what threshold of resampling can
give better scores of evaluation metrics as balancing the dataset is not a good choice in all cases.

In our future work, we aim to compare these balancing techniques with different thresholds of resampling to
assess the performance of imbalanced credit card datasets.
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